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The shock normal direction

......\mportant basic information describing the
shock properties

For example,

It Is believed that the accel eration process of

electrons emitting type |l radio bursts depends
critically on the shock angle.

Determination of the shock normal:
conceptually simple, but not straightforward in reality
— eg., Russdl et a.(2000) JGR 105, 25143-



Determination of the shock normal direction

The Bastille day flare in 2000 .... IPS arrived on the next day
(average speed ... 1AU/28hours ~ 1500 km/s)
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L essons from the study of the Bastille | P shock
... ACE, SOHO,WIND,GEOTAIL and IMP-8
were all in the upstream solar wind!
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We are going to show the results of

1. The conventional methods based on the single satellite
observation (minimum variance, €tc.)

2. 4-satellite method for the plane surface model

3. b-satellite method for the spherical surface mode

4. 5-satellite method for the plane surface model with
constant dVsnock/dt (time derivative of the shock speed)
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the Bastielle interplanetary shock on 15 July 2000
3 of 5 satellites gave the magnetic field data
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local determination of the shock normal direction

The conventional methods give consistent answers:
e WIND best fit (Lepping et al., 2001, Solar Phys. 204, 287).

n,, = (-0.93, +0.26,+0.26) 1 R B S S
phi~164° , theta~15°

e Magnetic minimum variance/Geotall:
Ng = (-0.82, +0.42,+0.39)
phi~153°, theta~23°
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theta (latitudinal angle)

n, and n; agree
(they make an angle ~ 13°

which iswithin atypical error range.) e e e

phi (longitudinal angle)
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plane surface model

4 satellites determine shock parameters if the shock has

a plane surface. Russell et al., 1983;
Horbury, Invited talk on the first day

velocity ~ Vs (constant)
direction ~ n

S,

IPS S,
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spherical surface model
formulation (1)

5-satellite method for spherical shocks

R.(t) = R,+Vs t

(Xc,Yc,Zc)
center




spherical surface model
formulation (1)

5-satellite method for spherical shocks

R.(t) = R,y+ Vs t

(Xc,Yc,Zc)
center

Ry + Vst =[ (X;-Xc)? + (Y,-YC)? + (Z,-Zc)?] V2
Ryt Vst, = [ (X,-XC)? + (Y ,-YC)? + (Z,-Zc)?] V2
Ryt Vst; =[ (X5-XC)? + (Y 5-YC)? + (Z5-Zc)?] V2
Ryt Vst, =[ (X,;-Xc)? + (Y ,-YC)? + (Z,-Zc)?] V2
Ry + Vsts = [ (Xs-XC)? + (Y5-YC)? + (Z5-ZC)?] V2

five unknowns (R, Vs, Xc, Yc, Zc) and five equations
— solvable (We need iterationsto treat nonlinearity of VVs)



spherical surface model
formulation (2)
Let us take the S, position as the origin of the new coordinate.

Then we have,
Ro = [ X2+ Yc? + Zc? V2 (1)
Ry + Vs (t,- 1) = [ (Xy-Xc)? + (Y ,-YC)? + (Z,-Zc)?] V2 (2)
Ry + Vs(t;- t) =[ (X5-Xc)? + (Y 5-YC)? + (Z5-ZC)?] Y2 (3)
Ry + Vs (t;- 1) = [ (X4-XC)? + (Y ,-YC)? + (Z,-Zc)?] V2 (4)
Ry + Vs(ts- t) =[ (Xe-Xc)? + (Y- YC)? + (Ze-ZC)?] Y2 (5

From (2)~(5), we have a set of nonlinear eguations,
X, XC+Y,YC+Z,Zc+Vs (4, - t) Ry=[ X, 24Y 2+Z2,2- V< (t,-1)?]/2  (2)
X XC+Y YC+Z,Ze+Vs (t;- 1)) Ry=[ X2+Y 2+Z 2. Ve (t;-1)%112  (3)
X4Xc+Y4Yc+Z4Zc+Vs (t,-t) Ro=[ X,2+Y 2+Z 2. Ve (t,-1)%]/12 (4)
X XCt+Y  Ye+Z Ze+Vs (t- t)) Ry=[ X2+Y 2+Z 2. VS (- 1)%1/12 ()

Note that if wefix Vs (2')~(5") are linear with respect to (Xc,Yc,Zc,Ry).
Our procedure s, therefore,
(8) Solve (2’)~(5’) for atrial value of Vs, and obtain (Xc,Yc,Zc,Ry).
(b) Search Vs sothat [Xc? + Yc2 + Zc?]Y? - R, =0 is satified.



latitudinal plane surface model
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longitudinal angle

of the shock normal vectorr
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spherical surface model
shock normal direction

depends on the choice
of the timing corrections
for the IMP-8 data.
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spherical surface model --- Rcand Vs

Curvature radius
of the shock surface

Rc
AU

.
shock speed ™[ Vs>0

Vs(projectedto | A 1 -
the ecliptic plane) o
o
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correction for IMP-8 timing (sec)



spherical surface model
formulation (1)

If the shock surface is spherical .... 5 satellites needed

R.(t) = R,y+ Vs t

(Xc,Yc,Zc)
center

Initially we expect that the center is inside of 1AU and Vs>0,
namely the shock has a convex shape expanding in time.

However, we should also take into account of the case
where the center is outside of 1AU and V s<0,
namely the shock has a concave shape shrinking in time.
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split plane surface model --- solution

Choose the best splitting time:

... agree with results from the
conventional methods
(WIND best fit,
Geotail MVM)
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Ygse (Re)

split plane surface model vs. spherical surface model

4-satellite method o-satellite method
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These two results seem to be not Inconsi stent.



It may not be so crazy to think of a concaved-shape | PS:
18 Jan 2000 CME SOHO/LASCO

A : Leading edge
B:Corel
C:Core?2

10:54 11:54

Ahead of such a concaved-shape CME, the shock may
also have a concave shape locally.

Question to solar radio astronomers:
Are there any peculiar type-11 burstsrelating to
concaved shocks?



plane surface model with constant dV s/dt

5 satellites determine shock parameters if the shock has

a plane surface. velocity ~ Vs=Vg,+a t
(a: constant)
direction ~ n

Physically unacceptable result:
| PS was accelerated from
660 km/s (at ACE) to
1330 km/s (at WIND)
IPS




Summary and comments

We have formulated a 5-satellite method in which the shock
curvature is derived from shock arrival times at these satellites.

The method is applied to obtain the curvature radius of the Bastille
Interplanetary shock in 2000.

This Bastille | PS seems to have had a concave shape locally when it
arrived at the near-earth environment.

Application of the 5-satellite method:
STEREO + 3 other spacecraft

possible Japan’s contribution to STEREO

(In addition to the Solar-B collaboration)
around Earth ... GEOTAIL(1992-?), SELENE (2005-)
around Mars ... NOZOMI (orbit insertion in Jan 2004)




