In-flight antenna calibration for Direction-Finding with STEREO/Waves

B. Cecconi, J.-L. Bougeret, M. Maksimovic, S. Hoang

Direction-Finding with STEREO/Waves

- STEREO/Waves: 3 antennas, 2 channels
- DF data samples: DF0, DF1 and DF2
 - DF0: 2 antennas [1 instantaneous measurement] (2 auto+1 complex cross = 4 measurements)
 - DF1: 3 antennas [2 successive measurements with antenna switching] (3 auto+2 complex cross = 7 measurements)
 - DF2: 3 antenna [3 successive measurements with antenna switching]
 (3 auto+3 complex cross = 9 measurements) → Full information
- DF = computing instantaneous source parameters
 S, Q, U, V, θ, φ (and possibly γ, source size) : 6 (7) unknowns
 - available: instantaneous analytical DF inversions for unresolved sources (or γ>5°) with DF0 or DF1 or DF2 measurements.
 - DF inversion with γ as an output in preparation.

STEREO/Waves VS Cassini/RPWS/HFR

- Cassini/RPWS/HFR: DF0 and DF1 but no DF2
- Cassini: main source of noise: 8 bits data coding (~20 dB noise !)
- STEREO: 12 bits data coding. Noise = 1/16 of Cassini.
- DF accuracy on Cassini:
 - only direction (I probe)
 - I° on directions, 10% on polarization degrees and 1db on flux IF: SNR>30dB and angular selection β>20°

(with $\beta \equiv$ elevation over the antenna planes)

- Excepted accuracy on STEREO: at least identical.
 - with digitalization noise 16 times lower.
 - complete data set on DF2 mode.
 - position (stereo observation)
 - extended sources: enough measurements to obtain typical size of the radio source.

In-Flight Antenna System Calibration

- In-Flight Antenna calibration necessary to do accurate DF:
 - calibration of direction and relative length: Short dipole approximation: DF inversions are supposing that the antenna is a electric dipole. ok if L«λ (f<1.5 MHz).

calibration is the determination of the effective electrical dipole equivalent to the monopole+satellite system.

Reference radio source with known properties (AKR ? SURA ?). SURA calibration : f~8-9MHz (not good for short dipole approximation) Calibration at f<1.5 MHz is only possible with AKR, but only if distance STEREO/Earth > 120 R_E

• absolute antenna gain calibration:

Reference radio source (Galactic background ? SURA ? Sun (with joint observations)?)

antenna/base capacitance and absolute effective length must be evaluated through in-flight calibration for absolute flux measurements [necessary for multi S/C analysis]

(accuracy depending on the accuracy of the determination of the reference source.)

DF before in-flight antenna calibration ?

- Use antenna calibration obtained through wire-grid simulation [Rucker et al.]
- on Cassini : $\Delta \theta = \sim 7.8^{\circ}$ from physical to calibrated effective antenna length ratio: +20%
- Rucker et al. Adv. Space Res. 2005: Δθ for STEREO/Waves antenna as computed through wire-grid simulation is ~10-30° !

In-flight calibration is necessary !!! but S/C rolls @ >120 R_E needed !

Cassini/RPWS/HFR antennas

	Antonno	. Antonno	Antonno
	<i>u</i> Antenna	v Antenna	w Antenna
Physical directions			
h/h _w	1.0	1.0	1.0
θ	107.5°	107.5°	37.0°
φ	24.8°	155.2°	90°
wire-grid simulation (ASAP)			
h/h _w	-	-	-
θ	106.4°	106.6°	29.6°
φ	16.0°	164.2°	89.5°
In-Flight Antenna Calibration			
h/h _w	1.21	1.19	1.0
θ	107.9°	107.6°	29.3°
φ	17.6°	164.4°	90.9°