SECCHI Status

R.A. Howard
Presentation to STEREO SWG
22 March 2004
Boulder, Colorado
Outline

- Instrument Status
- Data Products
- Data Display
- Beacon Data
- Observation Timing
- First Light Press Releases
- 3D Visualization Status
Instrument Status

• Flight Hardware Development Is Well Underway
 – Delivered:
 - Flight Shutter and Polarizer/filter Wheel Mechanisms
 - Flight Focal Plane Assemblies With Ccds
 - SCIP Bench
 – “First Light” on FM EUVI and COR2 Telescopes
 – MEB, CEB in Unit Level Environmental Testing
 – Final Fabrication: COR1, GT, SEB
 – HI Well Underway

• Manufacturing Problems Have Caused Extensive Replanning of Schedule
 – E.G. Coating Problems in All Countries Have Been Surprising
 – Fab of PC Boards Has Shown Lifting of Traces

• Mass Is a Major Issue
 – SCIP Bench Has Measured More Than Expected
 – Harness Between Electronics and Telescopes Is Longer (Heavier) Than Estimated
Instrument Performance Status

• No descoping of instrument performance has occurred in parameters that have been measured to date

• No descoping is forseen
Data products

- Catalogs and FITS Images of the Data
- Movies
 - Multipanel Synchronized to 2 (3?) Spacecraft and Multiple Sensors
 - Anaglyph
 - Formats (2Kx2K and 1Kx1K)
 - GIF/PNG, MPEG I or II
 - Must Meet Needs of Amateur Comet Hunters
- Synoptic Maps Showing Intensity at Selected Heights
- Lists (Automatically Generated)
 - CME, Prominence or Filament Eruption, Disappearance
 - Coronal Holes, UV Waves and Dimmings
 - Total Flux in EUV
Data Display

• Display Capabilities
 – Anaglyph Prints Viewed With Red/blue Glasses
 – Stereo Image Pairs Viewed on Crt/projector With LCD Goggles
 – Coronal “Fly Through”
 – Orbit Display With Planet Locations
 – Movies From Up To 3 Locations
 – Inset of One Image Type Into Another Type

• STEREO Browser
 – Interface to Instrument Databases Is Via VSO Data Query
 – Thumbnails Customizable by User to Incorporate Any VSO Compatible Data Set
 – Should Display All the Instruments Plus Modeling Output (S) Tying Remote Sensing to In-situ
Beacon Data

• NOAA Is the Prime User
• Objective Is to Provide Sufficient Visibility to
 – Identify When CME Has Been Launched Toward Earth
 – Track CME Through Space
 – Provide a Warning and Then Better Indication of Impact
• Software (Ground)
 – Reconstitute (Low Resolution) Image
 – Background Removal
 – Automatic Detection of CME.
 - During Extended Phase – Automatic Detection Will Be Performed On-board
 – Reformat to Utilize Existing CME Measuring Software
• Data Type
 – Reduced Resolution Images
 – Exact Definition Is Uploaded at the Time of Operations (Weekly)
Observation Timing

Need to be able to synchronize observations based on actual location of the CME
“First Light” Press Releases

• Topics Under Consideration
 – 3D Deconvolution of EUV Structures
 - Loops, Prominence
 – 3D Deconvolution of Coronal Structure
 - Streamer, Coronal Hole, Polar Plumes, Cmes
 - Good Opportunities Apt to Be Present Immediately Except for Cmes, for Which a Good Opportunity Might Not Be Present for Some Time
 - Would Involve 1-5 Days of Observations
 – 3D Deconvolution of Streamer Belt and the Inner Heliosphere
 - Would Involve 14-27 Days of Observation
 - Could Include All Stereo Instrument Data Plus Modeling

• Data Must Be Embargoed Before Release
 – Implies That 1st Observations Should Not Be Put Onto Web Immediately

• Public Interest in Data Is Greatly Enhanced If They Are Real-time. The Interest Is Lessened the Less Real-time It Is. Therefore We Must Prevail on APL to Make the Data Available Quickly
3D Visualization

• 3D Deconvolution
 – Pixon Method Chosen for Speed (Large # Voxels, up to 10^9): Small Number of Iterations, Intelligent Guidance to Declining Complexity Per Iteration. Sample Times Have Been 32x32x32 <15 Minutes, 64x64x64 ~60 Minutes, 128x128x128~6 Hrs, (1 Ghz PC).
 – Minimum Complexity: With This Underdetermined Problem, We Make Minimal Assumptions in Order to Progress. Another Possibility Is Forward Modelling, I.E. Parameter Fitting. Complementary Approach.
 – Received Cme Models From J. Chen, P. Liewer, S.T. Wu and Z. Mikic, and Have Used Them to Generate a 3D Reconstruction
 – Example of the Results of the Deconvolution for the Chen Model Are Shown in the Next Slide
 – Future Work
 - Continue Refining Reconstruction Algorithm, I.E. Hierarchical Gridding
 - Use Lasco/eit Data for Rotational Tomography.
 - Time Dependent Reconstructions

• Forward Modeling Program Using Conceptual Structures Is Underway
3D Reconstruction: CME model (J. Chen)
Three Ecliptic Viewpoints
2 Views in Ecliptic and 1 Above Ecliptic

Figure 2. Rendered DATA

Logarithmic \([6.00e+11, 2.00e+16]\) photons sec\(^{-1}\) cm\(^{-2}\) sr\(^{-1}\)