STEREO Space Weather Beacon: March 2004

D.A. Biesecker

NOAA/SEC
Outline

- Ground station network status
- SEC’s priorities – and thus what you might choose to do with STEREO data
- What SEC can reasonably expect from the STEREO data
Ground Station Partners

- Earliest Beacon Mode operation April, 2006
 - End of phasing for ‘B’ s/c ~ 60 days after launch
- None have yet signed on the bottom line
 - Moving along nicely
 - Probables would give us the coverage we need
 - Looking for redundancy wherever possible
- Probables are NOAA (Fairbanks), NOAA (Wallops)*, RAL* (UK), CNES (France), and CRL (Japan)
- Possible is USAF (California), ACRES (Australia), NOAA (Boulder)*
- Others?
- * primary tracking target is ACE
Ground Station Particulars

- NOAA/Wallops and NOAA/Fairbanks (13m)
 - Formal request not yet made – needs to be a high priority
 - Informal contacts indicate antenna availability likely
- CNES (9m near Toulouse)
 - Should receive confirmation soon
 - Performance of antenna recently tested and additional upgrades being considered to increase link margin
 - Technical exchange on-going
- RAL (12m, 2.4m and 3.7m)
 - ACE is primary here – use smaller dishes for ACE?
- CRL (6m) – now 7m
 - Expect decision on funding on April 1, 04. Preliminary word is favorable
 - Valley Forge (PA) Composite Technologies building new antenna
 - Technical exchange to start when budget approved
Other beacon issues

- MOU with NASA
 - Draft received from NASA in December
 - Still needs action by SEC
 - Formalizes the roles of SEC and SSC

- Software to decode Viterbi encoded data in test (Phil Karn)
 - Performance ‘slightly’ less than expected?
 - Might force use of Turbo encoding earlier in the mission
 - Still need actual s/c data for testing
N. Arge promises the following from Wang-Sheeley work:

- Given the s/c position in heliographic coord.
- Solar wind and IMF radial polarity (B_x) forecasts (1-7 days)
- In time for STEREO?
- $|B|$, density, other B components
SEC’s Identified Needs: I

- **Highest priority — in no particular order**
 - SEP event forecasts — start, peak, & end times; peak flux, spectrum, fluence, probability of SEP
 - Energetic electron flux prediction for ISS
 - Regional geomagnetic nowcasts and forecasts (e.g. Auroral electrojet maps)
 - Ionospheric maps of TEC and scintillation (nowcasts and forecasts)
 - Geomagnetic index forecasts (A, K, Dst) and probability forecast
SEC’s Identified Needs: II

- **High Priority** — in no particular order
 - Geomagnetic activity predictions (1-7 days): CME’s, coronal holes, solar magnetic observations; and ACE/EPAM
 - Geomagnetic storm end time forecast
 - Real-time estimates of geomagnetic indices
 - Improved image analysis capability (e.g. SXI, STEREO, SMEI)
 - Short-term (days) F10.7 forecast
 - Short-term (days) X-ray flare forecast
 - Geosynch. magnetopause crossing forecasts
 - EUV index
 - Real-time quality diagnostics (verification) of all warning/watch/forecast products
 - Routine statistical/numerical guidance for all forecast quantities
NOAA/SEC use of STEREO

Based on success of transitioning missions such as ACE and SOHO into operations; expectations are high

- Most important lesson is probably the time it took to integrate into forecast center
- Expect STEREO to be faster just because we’ll receive beacon data from start
 - It needs to be faster due to changing geometry and thus changing capabilities
Transition to operations

- 'Easiest' products are data
 - How to display
 - 3-d graphics
 - Single s/c 2-d images still useful?
 - Halo CME observed at Earth is easily distinguished as front/back sided with one side view
 - Interpretation must be straightforward

- Higher level products
 - Require interpretation of data
Coronal Mass Ejections

Currently – SOHO/LASCO

- Halo CME’s
 - 1-3 day advance warning of geomagnetic storm
 - Uncertain hit/miss estimate for ‘partial’ halo CME’s
 - Error of ±11 hours in arrival time
 - Rough estimate of intensity and duration

STEREO

- 3-d views of CME’s
 - 1-3 day advance warning of geomagnetic storm
 - Continuous observations as CME propagates from Sun to Earth
 - Reliable hit/miss prediction
 - Potential for prediction of arrival time to within hours (or less?)
 - Improved estimate for storm duration
e.g. CME related geomag storm

- Did a CME occur? - data
- Is it Earth directed?
 - Halo – data
 - Partial halo – reliable prediction needs more than data
- When will it arrive? – more than data
- How long will the storm last? – more than data
- How strong will the storm be? – more than data
STEREO beacon CME detection

OVERVIEW

Objective:
Use near-real-time STEREO beacon data to infer direction, speed, extent, and mass of Earth-directed CMEs

Application:
Advance warning of oncoming CMEs affecting geospace

Forecast Gain:
Immediate, High

APPROACH

Strategy:
Forward modeling study to develop understanding of stereo images, then construction of ops analysis tools

Uniqueness:
Only N-R-T beacon analysis underway, is based upon triangulation

Context:
Complements tomographic approaches

GRAPHIC

![STEREO beacon CME detection graphic]

PROGRAMMATIC

Resources Needed:
0.2 FTE level of effort

Development Time:
2-3 years at 0.2 FTE

Current Status:
Basic LOS routines done, analysis not yet started
Recurring Solar Wind Streams

- Currently
 - For first time stream – estimate from longitude
 - Recurring stream – use previous occurrence and changes in coronal hole since then – 27 days

- STEREO – Lagging spacecraft
 - Use actual observation from ~few days earlier
 - Improved start time of high speed wind
 - Improved end time of high speed wind
 - Determination of high speed wind properties (e.g. velocity)
Solar Wind Discontinuities (and more)

Currently
- In-situ observation at L1
- ~1 hour warning of \(n, V, B \)

STEREO
- Either spacecraft, depending on heliosphere
 - May potentially provide ~ 1 day warning of \(V, B \)
 - Weimer et al. (2003)
Long-term Forecasts

- Current – up to 7 day lead
- STEREO – 14 or more day lead
 - EUV Flux
 - New equatorial coronal holes
 - New active regions
 - Level of flaring activity
Done

- Backup slides follow
Space Weather Beacon Data

- All non-imaging data desired
 - High SWx forecast impact and low impact on telemetry
- The image data requires trade-offs
 - High SWx forecast impact, high impact on telemetry
 - Which image data are most useful?
SECCHI Draft Observing Plans

- Hourly Plan 7 256 x 256 pixel images
 - 00 mins EUVI, COR1, COR2
 - 15 mins COR2
 - 30 mins EUVI, COR2
 - 45 mins COR2

- Hourly Plan 28 128 x 128 pixel images
 - EUVI every 5 minutes
 - COR1 every 6 minutes
 - COR2 every 10 minutes
SEC Preferred Observing Plans

- Hourly Plan 7 256 x 256 pixel images
 - 00 mins COR2, HI1 or HI2
 - 15 mins COR2
 - 30 mins COR2
 - 45 mins COR2

- Provides 4 images of 2500 km/s CME (fastest)
 - ‘Reliable’ velocity and acceleration determination
256 x 256 EIT Images

12 min cadence
10.4”/pixel

2x Enlargement
128 x 128 EIT Images

12 min cadence
20.8"/pixel

4x enlargement
256 x 256 LASCO C3 Images

~30 min cadence
224”/pixel

2x Enlargement
128 x 128 LASCO C3 Images

~30 min cadence
448”/pixel

4x enlargement
Space Weather Beacon Questions

- Observing plan
 - Piggyback on full resolution observing plan or some space weather beacon only images?
 - Brightness or polarized images?
 - EUVI wavelength scan?
 - HI-1 or HI-2 data?

- Non-image data?
 - Brightest pixel in each 64 x 64 pixel block (32 x 32 pixel image)
 - Cosmic Ray Counts from HI Scrubbing

- Do we generate SW Beacon images when we don’t know someone is listening?