SMEI direct observations and 3D-reconstruction measurements and their comparison with STEREO instrumentation

B.V. Jackson, M.M. Bisi, P.P. Hick, A. Buffington, J.M. Clover
Center for Astrophysics and Space Sciences, University of California at San Diego, LaJolla, CA, USA

and

D.F. Webb
Institute for Space Research, Boston College, Chestnut Hill, MA
SMEI observations and comparison with STEREO

Heliospheric C.A.T. Analyses

The outward-flowing solar wind structure follows very specific physics as it moves outward from the Sun.
SMEI observations and comparison with STEREO

27-28 May 2003 CME events brightness time series for select sky sidereal locations

SMEI Brightness with a long-term (~30 day) base removed.

(1 S10 = 0.46 ± 0.02 ADU)
SMEI observations and comparison with STEREO

2003 May 27-28 CME events

SMEI density 3D reconstruction of the 28 May 2003 halo CME as viewed from 55° above the ecliptic plane about 90° West of the Sun-Earth line.

2003/05/30 00:00 UT

SMEI density (remote observer view) of the 28 May 2003 halo CME
SMEI observations and comparison with STEREO

2003 May 27-28 CME events

CME masses

2003/05/30 00:00 UT

Excess Mass(g): 1.844E+016
Total Mass(g): 2.491E+016
Ambient (g): 6.470E+015
Energy (ergs): 3.448E+031
Volume: 0.144 AU^3

2003/05/30 00:00 UT

Excess Mass(g): 5.117E+015
Total Mass(g): 6.921E+015
Ambient (g): 1.804E+015
Energy (ergs): 8.759E+030
Volume: 0.030 AU^3
SMEI observations and comparison with STEREO

SMEI proton density 3D reconstruction of the 28 May 2003 halo CME compared with Wind
SMEI observations and comparison with STEREO

SMEI 3D reconstruction of the October 28 CME.

The above structure has a mass of about 0.5×10^{16}g excess in the sky plane but $\sim 2.0 \times 10^{16}$g excess at 60° (Vourlidas, private communication, 2004).

Mass determination $\sim 6.7 \times 10^{16}$g excess and 8.3×10^{16}g total for northward directed structure within the 10 e−cm$^{-3}$ contour.

SMEI C.A.T. Analysis
SMEI observations and comparison with STEREO

2003 October 28 CME

Northeast-directed ejecta is more-nearly earth-directed

LASCO C2 CME image to 6 Rs.

SMEI enhanced Sky Map image and animation to 110° elongation.

SMEI C.A.T. Analysis
SMEI observations and comparison with STEREO

2003 October 28 CME

By the way!

2003/10/30 00 UT

“B” fit of the 28 October 2003 CME Magnetic loop analysis by T. Mulligan
SMEI observations and comparison with STEREO

Recent higher-resolution SMEI PC 3D reconstructions show the CME sheath region as well as the central dense core.

2003 October 28 CME higher-resolution analysis

SMEI C.A.T. Analysis

Ecliptic cut

Meridional cut
SMEI observations and comparison with STEREO

20 November 2007 CME higher-resolution analysis

Ecliptic cut

SMEI C.A.T. Analysis

Fisheye
SMEI observations and comparison with STEREO

20 November 2007 CME *in situ* analysis

STEREO B

Wind

STEREO A
SMEI observations and comparison with STEREO

20 November 2007 CME higher-resolution analysis

SMEI-derived Ecliptic cut

In-situ example 3D reconstruction at STEREO A

SMEI C.A.T. Analysis
SMEI observations and comparison with STEREO

Comparison views of SMEI 3D reconstruction and STEREO HI-2A view

SMEI - STEREO A
- 3D reconstruction of the STEREO A view
- STEREO A image with a combined image average subtracted
- SMEI C.A.T. Analysis

SMEI - STEREO A FOV

CASS/UCSD
SMEI observations and comparison with STEREO

SMEI View From STEREO HI 2’s
20 November 2007 SMEI analysis

STEREO A view
SMEI C.A.T. Analysis

STEREO B view
SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison

24-25 January 2007 CME analysis

SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
24-25 January 2007 CME analysis

SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
24-25 January 2007 CME analysis

SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
24-25 January 2007 CME analysis
SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
24-25 January 2007 CME analysis
SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
24-25 January 2007 CME analysis
SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
24-25 January 2007 CME analysis

2007/01/27 12:00 UT

Excess Mass = 2.12^{16} g
Total Mass = 2.80^{16} g
Ambient = 7.02^{15} g
Volume = 0.104 AU3
SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
WHI March-April 2008 analysis

SMEI observations and comparison with STEREO

SMEI and STEREO HI 2 Comparison
WHI March-April 2008 analysis
SMEI observations and comparison with STEREO

Sample HI-2A brightness time series for select sky sidereal locations

HI-2A brightness time series with a long-term (7-day minimum) base removed.

HI-2A image on 01 July and time series locations

Venus?
We have now devised a wealth of “tools” to understand and analyze the SMEI image data, and to ascertain how well the SMEI 3D reconstructions work.

Provided the HI-2 instruments have the stability to provide brightness above a long-term base (we think they do), we now have the tools required to view common structures and to reconstruct the regions in common between the HI-2 and SMEI.