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Name Institution | Role/Responsibility
Mihir Desai SwRI Pl - Particle Data from STEREO, ACE, Wind
Heather Elliott SwRI Col, Solar Wind Data from ACE & Wind
Frederic Allegrini | SwRI Col - Particle Data from STEREO, ACE, Wind
Maher Al-Dayeh | SwRI Postdoc - Particle Data from STEREO, ACE,
Wind
Mark Popecki UNH Co-l; Solar wind from STEREO
Gang Li UAH Co-l; - Modeling of SEPs
Rick Leske Caltech High-energy data from STEREO & ACE
Gary Zank UAH Collaborator: Modeling
Glenn Mason JHU/APL Collaborator: Low--energy particle data from
Wind, STEREO & ACE
Dick Mewaldt Caltech Collaborator: High-energy data from STEREO

& ACE




Overview
Goal & Approach

Status of Proposed Work
EP & Magnetic field Data
Suprathermal 1on & solar wind data
2D Modeling using Helios 1 & 2, and IMP-8
Overall Project Status
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Eastern events:
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erties (time profiles, Fe/0
~ ratiofSotropy etc) depend on the

locatio s/c relative to flare location

QuickTime™ and a
TIFF (Uncompressed) decompressor
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& Zank - 1D model
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m longitudinal Variability

= [nterplanetary conditions e.g., CMEs and/or
CME Interactions (Cane et al., 2006;
Gopalswamy et al. 2005)

= Seed population variability (Desali et al, 2006)

. SW vs availability of suprathermals I
= Shock obliquity (Tylka & Lee 2006)
Quasi-parallel vs quasi-perpendicular injection & l

acceleration
= Direct Flare Contributions (Cane et al., 2003)

= Particle scattering in the IP Medium (Mason et al.
2006)




Evaluate the relative importance of
Interplanetary conditions, the
suprathermal seed population,
shock Injection and acceleration,
and particle scattering in driving
the longitudinal dependence of
SEP properties observed at 1 AU




QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

1. Flare contributions - direct vs seed population?

2. Role of variable seed populations and their injection mechanisms at
shocks with different obliquity?

3. Effects of rigidity-dependent scattering during acceleration, escape,
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. Create EP and mag field data analysis tools

> Automated routines for data download and processing
-- assisted by Glenn Mason & Andy Davis

« PLASTIC SW and suprathermal data analysis
> In progress

e Develop 2D Model to simulate SEPs from
previous solar cycle
> In Progress

« Data analysis and modeling of SEPs as they
occur In cycle 24
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« A two dimensional MHD code will be used to simulate
the coronal mass ejection driven shock.
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Acceleration at an

obllque shock

CME shock is
dynamic — evolving
with time and
changing geometry
along the shock
surface.

shﬂck 4y Acceleration needs
I to consider the effect
of kappa_perp, which
I

Su

differs from quasi-
parallel shock

B This is further
p tangled with
transport (field line

Jumplng)
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Use plasma,
magnetic field,
and particle data
at Helios 1, 2 and
IMP-8 for
developing and
validating the 2D
model

In the process of
modeling 2 SEP
events

Intensity (cm?® s sr MeV)™

Intensity (cm® s sr MeV/n)™

ntensity (cm® s sr MeV)™

Profons (Mev): H1&2 (4-13) ImpB(4,8-15)
[TITTTT I T T[T T IR IT T T T I T[T AT I T I AT IT T T I T AT T I T I

Heliog=1

2 | Heliog—2
10 wpa f
10° 4
1072
1074

5 80 81 B2 B3 &4 65

DOY of 1979

Mgha (MeV/n): H1 & 2 (4-13); bmpd{4.2-132)

1072
50 60 61 62 63 64 65
DOY of 1979

Erectrons [Mev): H1 & 2 (0.8-20; ImpB(0.B-2.5)

1072

107" . s ' |
59 ED 61 B2 B3 84 65
DOY of 1979

Pratons (Mev): Hi &2 (27-37); ImpBi25-48)

58 60 B1 B2 B3 B84 B5
DO OF1979

Mpho (Mev/n): H1 & 2 (27-37); mpl{28-52)

29 80 Bl B2 B3 B4 BS
DOY OF1979

Flare: S23E58

P
;&_'ﬁjf
;/;Z\: N




Summary

e Like the rest of the STEREO Team, we are eagerly
awaiting the start of solar activity and SEPs

 SEP Data Analysis and Modeling work in good shape
--- expect results in Spring & Summer

e Distant Upstream ion events with ACE, Wind &
STEREO-A (Desai et al., 2008)

 CIR properties at ACE & STEREO (Mason et al.,
2008; 2009)

* Properties of Suprathermal Talls over a solar cycle
(Al-Dayeh et al., 2009)

« CME-shock Accelerated ions over a solar cycle
(Allegrini et al., 2009)




The End




al Tails in Solar Wind

Jxygen and Iron
A Popecki & the PLASTIC Tean
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Periods with low solar wind speeds
allows the highest possible ratio of
heavy ion speed to proton speed within
the fixed energy limits of the
Instrument.




d low speed solar wind selection and

calculation of spectra

900

e Examples of high and
low speed solar wind
were selected. Selected
periods of low speed
solar wind are indicated
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The energy spectra of solar wind O and Fe have been
calculated for low and high speed periods.

Both O and Fe count spectra display tails above the H+ solar
wind speed.

Spectral variations appear in both ion species.

lonic charge states decrease with increasing energy in both Fe
and O.

The low speed Fe measurements do not extend up into the E-
1.5 suprathermal tail region in which Gloeckler et al. find
constant spectral forms (Fig. 1).

The fluence spectrum of suprathermal Fe for low speed solar
wind falls somewhat faster than their H and He observations,
up to VIV, ~1.7.

Next: O and C tails may extend to higher speeds in sufficient
quantities to examine the spectral form above V/V, =2.



LN Programmatics

. Monthly team telecons

 Meetings
> SOHO/STEREO -- Bournemouth England
> SW 12 - Saint Malo, France
> ICRC -- Poland

> Fall AGU -- San Francisco
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Waves & Turbulence

1. Flare contrlbutlons dlrect VS seed population?

2. Role of variable seed populations and their injection
mechanisms at shocks with different obliquity?

3. Effects of rigidity-dependent scattering during




quasi-parallel injection

AN Tylka & Lee (2005)
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for high and low speed O and Fe

—o— Fe low speed s/w 07/340

q 0 14 1 —&— Fe low speed s/w 07/341
—u— Fe high speed s/w 08/007
13 A —ﬁ—Fe Iow speed s/w 07/255
e foar VT MION
q 12 A

— O low speed 2007_341
—&— O low speed 2007/340
—&— O high speed 2008/007

1.000 10.000 100.0C
Average E (keV/e)

- ol
: "‘*n"\_/\ \\‘

v~ 0 D
I

1 10 100
Average E (keV/e)

» Average charge states are —— 2008/193.0-195.52
14 1 —&— 2008/242.0-244.5
shown for each ESA step range: —o— Fe high speed s/w 08/007
13 1 —x— 2008/140.0-142.0
Q(E) 12 4 q 2008/087
o— 2008/273.0-275.0
» Charge states tend to decrease 11 4 —s— 2008/286
with increasing energy. 10
» The charge states and ESA step 7 \Nfﬁ
energies together provide the ®7
. 7 -
average energies.
9 9 64 Fe
5 T T — T T T T T
1 10 100

Average E (keV/e)



Spectra in V/V,
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Counts/keV vs. V/V,
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§ At a quasi-perp._ shock, Alfven wave intensity goes to zero,
so contribution of «; cos(0) can be ignored. The major
Prom K.

contribution comes

K, =&, [T+ (07 rl)?] ¥ Jokippi 1987
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High speed tails have been observed in solar wind H*
and He**, as well as in pickup He* (Gloeckler, Gloeckler
& Mason; see ACE News #98).

Tails have implications for particle injection into the
shock acceleration process.

Above speeds of ~2V,, the tails appear to have a
constant profile regardless of solar wind conditions.

The slope goes as (V,,/V.,)?° in phase space density,
and as E-1° in energy.

We will investigate heavy ion speeds and characterize
possible tails in ions heavier than He.

Using STEREO/PLASTIC:

> The energy spectrum of O and Fe may be obtained
from periods of high and low speed solar wind.
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