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Abstract

It is widely believed that loops observed in the solar atmosphere trace out magnetic field lines. However, the degree
to which magnetic field extrapolations yield field lines that actually do follow loops has yet to be studied
systematically. In this paper, we apply three different extrapolation techniques—a simple potential model, a
nonlinear force-free (NLFF) model based on photospheric vector data, and an NLFF model based on forward
fitting magnetic sources with vertical currents—to 15 active regions that span a wide range of magnetic conditions.
We use a distance metric to assess how well each of these models is able to match field lines to the 12202 loops
traced in coronal images. These distances are typically 17-2". We also compute the misalignment angle between
each traced loop and the local magnetic field vector, and find values of 5°~12°. We find that the NLFF models
generally outperform the potential extrapolation on these metrics, although the differences between the different
extrapolations are relatively small. The methodology that we employ for this study suggests a number of ways that
both the extrapolations and loop identification can be improved.
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1. Introduction

It is universally accepted that magnetic fields play a critical
role in a wide range of solar phenomena, such as the heating of
the solar upper atmosphere, the origin of the solar wind, and the
initiation of coronal mass ejections. Unfortunately, at present,
accurate magnetic field measurements over a wide field of view
are routinely available only in the solar photosphere, where the
magnetic field is still dominated by the plasma pressure and the
field is not force-free (e.g., Metcalf et al. 1995). This greatly
complicates the use of photospheric measurements as a
boundary condition for methods that use the force-free
assumption to extrapolate the magnetic field into the solar
chromosphere and corona.

One approach to addressing the mismatch between the
photospheric measurements and the force-free condition is to
preprocess the vector magnetic field observations so that they
approximate what would be measured in the chromosphere,
where the field does become force-free. The nonlinear force-
free (NLFF) code introduced by Wiegelmann et al. (2006)
represents perhaps the most widely known example of this
approach. Other codes implementing this idea include those
presented by Valori et al. (2012) and Jiang & Feng (2013).
These codes build on the earlier NLFF models of Wiegelmann
(2004), Amari et al. (2006), and Wheatland (2007).

Recently, an alternative approach to modeling nonpotential
fields in the corona has been developed that does not rely on
vector magnetic field measurements. Instead, the line-of-sight
photospheric magnetic field is modeled as a superposition of
magnetic sources. The currents associated with each of these
sources is varied in order to optimize the agreement between
loops traced in coronal images and the topology of the field (see,
Aschwanden 2013a, 2016; Aschwanden & Malanushenko 2013;

also see Malanushenko et al. 2012 for a variation on this
approach).

Models of the magnetic field play a critical role in our ability
to study coronal heating. For example, a number of studies
have used magnetic field extrapolations to determine the
relationship between heating rates and the properties of the
field by comparing full active region hydrodynamic simulations
to observations (e.g., Schrijver et al. 2004; Warren &
Winebarger 2007; Lundquist et al. 2008; Winebarger et al.
2008; Bradshaw & Viall 2016; Ugarte-Urra et al. 2017). These
studies have often found that a volumetric heating rate that
scales approximately as B/L, where B is the mean field
strength and L is the loop length, provides a good match
between the simulation and the global properties of the
observed active region.

Interestingly, the alternative approach, where measurements
of intensity variations on individual loops or plasma parameters
on individual loops are related to the properties of the
associated field lines appears to have received relatively little
attention (see Xie et al. 2017 for one such example). This is
surprising given that the trend in solar instrumentation is
toward higher spatial and temporal resolution. The High-
Resolution Coronal Imager (Hi-C; Kobayashi et al. 2014) and
the Interface Region Imaging Spectrograph (IRIS; De Pontieu
et al. 2014), for example, achieve a spatial resolution of better
than 360 km and cadences below 10 s.

One impediment to studying the relationship between the
properties of individual loops and the properties of magnetic
field lines is the difficultly of matching the two together. As
loops are projected onto a two-dimensional (2D) plane, their
three-dimensional (3D) geometry is ambiguous, except in the
rare case of stereoscopic observations. Perhaps more funda-
mentally, it is not clear how closely current extrapolation
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Figure 1. Left panel: SDO/HMI line-of-sight magnetogram. Right: SDO/AIA 171 A image. Both images are from 2010 September 29 at 23:21:34. The box in each
image shows the patch around active region 11109 selected for the magnetic field extrapolations.

techniques reproduce the topological properties of the corona,
and how force-free the corona is at each loop location.
Coronal images certainly show many clear examples of loops,
or at least partial segments of loops, but systematic
comparisons between the different extrapolation techniques
and these loops have yet to be carried out. Systematic studies
of different NLFF extrapolation methods have generally
focused on the more global properties of the field, such as the
free energy or the helicity (see, for example, De Rosa
et al. 2009 and DeRosa et al. 2015). Some previous studies
have compared extrapolated field lines to loops reconstructed
from stereoscopic observations, De Rosa et al. (2009) and
Chifu et al. (2017), but these comparisons have been limited
to only a few loops.

In this paper, we perform systematic comparisons of several
extrapolation techniques with loops traced in coronal images.
We consider the Vertical-Current Approximation (VCA) NLFF
method described in Aschwanden (2016) and the NLFF
extrapolation method based on vector observations described
in Wiegelmann et al. (2012). For reference, we also consider a
simple potential field extrapolation. Observations of the
photospheric field are taken from the Helioseismic and
Magnetic Imager (HMI; Scherrer et al. 2012) on the Solar
Dynamics Observatory (SDO). We apply all three methods to
the 15 active regions analyzed in Warren et al. (2012), which
represent a broad spectrum of active regions sizes and total
magnetic fluxes. For each of these regions, we trace loops in
coronal images taken with the Atmospheric Imaging Assembly
(AIA/SDO; Lemen et al. 2012), using an established technique
(Aschwanden 2010; Aschwanden et al. 2013). To evaluate the
extrapolations, we consider two metrics: the mean distance
between the projected field line and the traced loops and
the misalignment angle between the local field vector and the
traced loops.

We find that the NLFF models generally outperform the
potential extrapolation, although the differences are relatively
small. The vector NLFF code produces smaller mean distances

between the best-fit field line and the traced loops than the
potential extrapolation. The VCA code produces smaller
misalignment angles between the traced loops and the local
field vector than the potential extrapolation.

The objective of this paper is to assess how well these
existing extrapolation methods reproduce the observed topol-
ogy of the corona. A future paper will focus on comparing the
properties of transient heating events to the properties of the
underlying field lines.

This paper is structured in the following way. In Section 2,
we provide a brief overview of the different magnetic field
extrapolation methods and the field line calculations. In
Section 3, we describe the loop tracing and the methods for
matching traced loops to field lines. The results from applying
this methodology to over 12000 loops sampled from the 15
active regions is presented in Section 4. A summary and
discussion, including a discussion of possible improvements to
both the extrapolation methods and loop identification, are
presented in Section 5.

2. Magnetic Field Extrapolations
2.1. Potential Field Extrapolation
A potential extrapolation is a solution to the equations

VxB=0, V-B=0 (1)

using the corrected line-of-sight component of the observed
magnetic field as the lower boundary condition. Introducing the
scalar potential B = V¢ reduces this to solving Laplace’s
equation, Vzgo = 0. For this work, we use a modified version
of a solver based on Fourier transforms (e.g., Alissandrakis
1981) that we have used in previous studies (e.g., Warren &
Winebarger 2006; Ugarte-Urra et al. 2007, 2017). One of the
modifications for this work is to project the observed field from
the helioprojective Cartesian (HPC) coordinate system in
which the data are taken to a cylindrical equal area (CEA)
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Figure 2. HMI line-of-sight magnetogram patch for active region 11109 on
2010 September 29. Top left panel: the native magnetogram in helioprojective
Cartesian coordinates (HPC). Top right panel: the magnetogram transformed
into the cylindrical equal-area projection (CEA). Lines of heliographic latitude
and longitude are shown in each of the top images. Bottom right panel: field
lines from the potential field extrapolation computed in the CEA coordinates
and overplotted on the CEA image. Bottom left panel: the same field lines
projected back onto the native HPC magnetogram.

coordinate system’ Sun (2013) provides additional details on
the transformations to and from a CEA projection. This corrects
for foreshortening in the observed magnetograms. See Figures
1 and 2 for examples of such a projection applied to an
observation. Previously, we had considered regions close to
disk center where foreshorting effects are smaller. We also pad
the perimeter so that field lines close locally rather than
connecting to sources in “adjacent” regions of the periodic
domain. This calculation yields the magnetic field components
on a Cartesian grid in the CEA coordinate system. We typically
use a grid spacing of about 0?1 per pixel or about 178 per pixel
and extrapolate up to a height equal to a box side, typically
several hundred arcseconds. A typical calculation takes about
60 s on a standard workstation.

2.2. Wiegelmann NLFF

An NLFF magnetic field is a solution to the equations
4
VxB=""J=aB, V-B=0, @)
c

so that J x B = 0. The twist parameter « is constant along
each field line but varies from field line to field line. As
mentioned previously, the lower boundary condition is derived
by preprocessing the observed photospheric vector field
measurements to make them more consistent with the force-
free assumption (Wiegelmann et al. 2006). The preprocessing
attempts to find a modified version of the field that is free of

5 See Thompson (2006) for a detailed discussion of various coordinate
systems and the transformations between them.

Warren et al.

forces and torques, is relatively smooth, but is also close to
what is observed. The field components at each point are
determined by starting with the observations and using gradient
descent to find the optimal balance between the four conditions,
given a set of relative weights specified by the user.

Once the boundary conditions are determined, the field
components are determined by minimizing a functional that is
the sum of the squares of the terms in Equation (2) and an error
term (see Wiegelmann et al. 2012 Equation (4)). As with the
potential extrapolation, the NLFF uses the observed photo-
spheric field projected into a CEA coordinate system (see Sun
2013 for details on the projection of the vector components).
We use a resolution of about 0706 per pixel or about 1”0 per
pixel and extrapolate up to a height of about 160”. A typical
calculation takes about 6 hr on a standard workstation.

2.3. Aschwanden Vertical-current Forward Fit

The VCA-NLFF method of Aschwanden (2016) uses the
radial component of the observed magnetic field as the lower
boundary condition and assumes that the field can be
represented as a linear superposition of sub-photospheric
sources of the form

d? 1
B.=B| & |l —— 3
O(r2)1+b2r2si 20 )
d? brsin6
B, = Bo| & |—227 4
¢ 0(r2)1 + b%r%sin? 0 @
By =0, ()

where (r, 6, ¢) are spherical coordinates centered at the
magnetic source and d is the depth below the photospheric
surface. The parameter b is related to the twist of the field by

2bcos b

= 6
“ (1 + b*r%sin® ) ©

Note that this representation for the magnetic field is force-free
and divergence-free to second order (in the parameter « or b,
for small values of v or b). It is analytically shown that the
VCA-NLFFF approximation is exactly divergence-free and
force-free in the vertical loop segments near the loop axis
above each buried magnetic charge (see Aschwanden 2013a
Section 3.3).

The twist parameters for the magnetic sources are iteratively
adjusted to minimize the misalignment angle defined in
Section 3.3, that is, to provide the best match between the
local magnetic field vector and the loops traced in coronal
images. Note that to determine the position of the observed
loop in 3D space, which is necessary to compute the magnetic
field vector, the loop is fit as a circular loop segment, which
drives the optimization of the alpha values in the final
computed field lines. It is not compared with a computed field
line. Also, the loops that we use to tune the parameters in the
VCA-NLFF method and the loops that we use to benchmark it
are derived from the same procedure (the OCCULT code). We
will return to these issues in the next sections.

The resulting extrapolation yields the radial and azimuthal
components of the field. These vector components are trans-
formed to Cartesian coordinates, which is consistent with the
outputs of the other codes. This method rebins the input
magnetogram to a resolution of about 1”5 per pixel and
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Figure 3. Example of observed coronal loops identified using automated loop tracing on AIA images from AR 11109. The top row shows an eight-image average for
each AIA channel used. Images in the middle row are high-pass/low-pass filtered to identify high signal-to-noise features. Automatically identified loop segments

from each image are displayed in green in the bottom row.

extrapolates up to a height of several hundred arcseconds. A
typical calculation takes about 10 minutes to converge on a
standard workstation. The VCA-NLFF code is written in IDL and
distributed through SolarSoftWare (Freeland & Handy 1998).

2.4. Computing Field Lines

Each of the extrapolation techniques yields the components
of the magnetic field in a Cartesian coordinate system. Thus,
the field lines are determined by

ds _dx _dy dz

= —_— = — N 7
B B, B, B ™

which we integrate using a fourth-order Runge—Kutta method
with adaptive step size (Press et al. 1992). To accelerate the
calculation of field lines we have written this code in C.

For the potential and vector NLFF methods, we need to project
the field lines computed in the CEA coordinate system back to
the HPC coordinate system of the original image. This
transformation is a multi-step process. We first transform (xcea,
Yeea) to heliographic latitude and longitude (6, ¢) and then extend
these coordinates to Stonyhurst heliographic coordinates (r, 6, ¢)
assuming » = R + Zeea. These coordinates are then transformed
to helioprojective-Cartesian, which accounts for the apparent
latitude (B-angle) and longitude of the observation at Earth (see
Equation (11) of Thompson 2006). An example of this mapping
of field lines from CEA to HPC is shown in Figure 2. The
transformation from the 3D Cartesian box of the extrapolation to
the spherical geometry of the Sun is not unique and introduces
unavoidable distortions that increase with height away from the
surface. The VCA-NLFF extrapolation is computed in Stonyhurst
coordinates, so only the final transformation to helioprojective-
Cartesian coordinates is needed to map field lines back to the
image plane. Finally, we note that the image time need not be
close to the time of the magnetogram used for the extrapolation.

It is a simple matter to rotate the coordinates of the field lines in
heliographic coordinates.

3. Comparison to Coronal Loops
3.1. Automated Loop Identification

To make systematic comparisons between many loops traced
in coronal images and the field lines computed from the magnetic
field extrapolations, we must use an automated loop tracing
algorithm. Methods for comparing field lines to observed coronal
structures without explicitly tracing the loops have been
developed (e.g., Carcedo et al. 2003; Conlon & Gallagher
2010), but these approaches require user inputs for each case.
For our work, we use the Oriented Coronal CUrved Loop
Tracing (OCCULT) code described in Aschwanden (2010) and
Aschwanden et al. (2013). The first step in this algorithm is to
compute the difference between low-pass and high-pass filtered
versions of an image. This eliminates both the large-scale
background and noise. The second step is to trace along the
intensity ridge emanating from the brightest point in the image.
After a loop is identified, the pixels in the image associated with
it are set to zero and the process is repeated.

The OCCULT code is used in the VCA-NLFF algorithm to
identify loop segments. However, we also run it as a separate
module on data that we have processed independently. The
VCA code automatically downloads a single, full-disk AIA
image for each wavelength of interest. We found that by
downloading a time sequence of AIA cutouts for the region of
interest and averaging them together, we are able to identify a
larger number of loops. Loops traced in the averaged images
also tend to be longer and appear to be more complete. An
example of loops traced on a set of six AIA EUV images from
AR 11109 is shown in Figure 3.



THE ASTROPHYSICAL JOURNAL, 860:46 (13pp), 2018 June 10

Warren et al.

Figure 4. Best-fit field lines for an observed loop in active region 4. Top panels: an observed coronal loop (green) in AIA 171 A along with the best-fit field line (red) from
each extrapolation. The mean minimum distance values are given in the lower left corner of each image. Bottom left panel: to find the best-fit field line, we project the traced
loop back to the coordinate system of the extrapolation assuming a range of possible heights. Here, we show the potential case. This projection forms a surface or “curtain”
(shown in light green), which is used to generate seed points for computing candidate field lines (shown in blue). The candidate field lines are projected onto the image
plane for comparison with the traced loop. The field line that produces the smallest mean distance is considered to be the best-fit field line (shown in red). This process is
repeated for all three extrapolations. Bottom right panel: the best-fit field lines from the three extrapolations plotted in the CEA coordinate system.

3.2. Mapping Field Lines to Traced Loops

The final element of this program is a method for matching
each traced loop in the AIA images to a field line computed
from the extrapolated magnetic field. As mentioned previously,
the principal problem is that the traced loops are projected onto
the image plane and the 3D geometry of the loop is ambiguous.
To overcome this, we map the 2D coordinates of the traced
loop back to the 3D geometry of the extrapolation assuming a
range of possible heights. This maps the one-dimensional (1D)
traced loop to a 2D, curtain-like surface. Points on this surface
are then used as initial conditions for calculating field lines.
These field lines are then projected back onto the image plane
where they can be compared with the traced loop. Examples of
this calculation are shown in Figures 4 and 5.

To determine how well-matched a given field line is to a traced
loop, we compute the average of the minimum Euclidean
distance between several points on the traced loop and the field
line. We refer to this average as the “mean minimum distance.”
Mathematically this is

N
Mean Minimum Distance = % > dmin(si, 57), )
i—1

where dp,in(s;, s”) is the minimum distance between a point on
the traced loop (s;) and any point on the projected field line (s”).
Here, we consider a number of points on the traced loop as a
function of loop length. We use 1 point for every 4” of loop
length, which gives about 50 points for the longest loops and 4
points for the shortest loops. An example calculation illustrat-
ing the distances to the two endpoints and the midpoint of the
traced loop is shown in Figure 6. A very similar metric was
used by Savcheva & van Ballegooijen (2009) for comparing
flux rope models with soft X-ray images of sigmoids.

By computing the mean minimum distance for each of the
candidate field lines, we are able to identify the best-fit or
closest field line from the extrapolation for each loop segment.
The field, of course, is continuous and we can only sample it
discretely. To increase the probability that we find the best
possible match, we have implemented the following procedure
for sampling the domain. We randomly sample 2000 points on
the curtain to use as seeds for computing initial field lines. We
then choose the best 10 field lines that provide the closest
match and consider points that are slightly perturbed away from
the seeds of this first batch. From this, we generate a second
batch of candidate field lines and then select the best-fit from all
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Figure 5. Same as Figure 4 for a loop in active region 1. This example illustrates the differences in the magnetic field topology produced by the three models.
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Figure 6. An example of a mean minimum distance calculation with N = 3. The
shortest distance between the endpoints and the midpoint of the traced loop
(shown in green) and any point on the projected field line (shown in red) are
averaged. This metric is used to evaluate how closely projected field lines match
traced loops. For this work, we scale N with loop length and between 4 and 50
points are considered.

candidates. In total, we consider 4000 field lines per traced
loop. We have tested this procedure by manually tracing out
projected field lines and supplying them to the algorithm as if
they were traced loops. The mean minimum distance metric for
these test loops is typically less than 1” and the best-fit field line
is always close to the input field line.

One important issue is that the loop tracing does not
necessarily return complete loops. Most traced loops are likely
to be only a loop segment sampled from a longer loop. Even if
the algorithm does manage to trace out a complete loop, we
would not necessarily be certain of this and be able to add
further constraints on the location of the field line footpoints.
Thus, it is easy to imagine scenarios where the closest matched
field line is not really related to the traced loop. A long,
overlying field line, for example, could be matched to a small
loop segment that actually lies close to the solar surface.
Unfortunately, it is not obvious how to resolve this limitation.
Some ideas will be discussed in the final section of the paper.

3.3. Misalignment Angle

Another point of comparison between traced loops and the
magnetic field is the misalignment angle, that is, the angle
between the vector formed by two points on the traced loop
segment and the local magnetic field vector. For a field line, the
angle between B and ds is zero by construction. If the
misalignment angle is large, magnetic field lines will quickly
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Figure 7. Example of a misalignment angle calculation. Here, test geometries are traced across the surface of points that project back to the traced loop (this is the
example from Figure 4), and the geometry with the smallest misalignment angle is chosen to represent the loop in 3D. Left panel: the 180 test geometries assumed in
the VCA model. The geometry with the smallest median misalignment angle is indicated in black. Center panel: test geometries generated by following paths of
minimum misalignment angle across the surface. The geometry with the smallest median misalignment angle is indicated in blue. Right panel: comparison of the
geometries derived from the misalignment angles with the best-fit field line derived from the distance metric, which is shown in red.

diverge away from the traced loop and the field is a poor
representation of the loop geometry.

For stereoscopically observed loops, the 3D position of the
loop is known and this quantity is a very useful measure of how
well the field represents the loop. De Rosa et al. (2009), for
example, computed the misalignment angle for several active
region loops imaged from multiple vantage points and found
that none of the NLFF extrapolations could improve on the
mean misalignment angle of the potential model (~24°).

The VCA model is optimized using the misalignment angle,
so this metric is also important to compute for our study, even
though the loops are observed only as 2D projections. For this
case, the 3D geometry of the loop must be estimated. This is
done by assuming a wide variety of parameterized functions for
h(s), the variation of height with distance along the traced loop
segment (see Figure 11 in Aschwanden 2016). The misalign-
ment angle is computed for each of these parameterizations,
and the one with the smallest median angle is selected to
represent the traced loop. An example of this calculation is
shown in Figure 7.

The VCA model assumes that the 3D geometry of the loop is
circular. It is possible to remove this restriction by selecting a
point on the edge of the curtain and, as is illustrated in Figure 7,
following the path of minimum misalignment angle across it.
The curve with the smallest median angle is selected to
represent the traced loop. Curves that do not cross the curtain
are excluded. For a small number of cases, no curves that cross
the curtain are found. Test calculations suggest that this method
produces 3D-loop geometries that more closely match the best-
fit field lines than the circular assumption does, and we
compute misalignment angles using both methods.

We note that the misalignment angle calculation and the
mean minimum distance calculations are closely related. The
mean minimum distance calculation finds the field line that is
the closest match to the loop observed on the image plane. The
misalignment angle calculation finds the 3D-loop geometry that
matches the traced loop in 2D and is most like a field line.

4. Results

We have described all of the elements that are needed to
carry out this study. We have three different methods for
computing the magnetic field components; we can compute

field lines and map them back and forth between the
computational domain and the image plane; we can auto-
matically trace out loops in coronal images; and we have a
method for matching field lines to traced loops as well as
methods for estimating the misalignment angle. We now turn to
the application of this methodology to an ensemble of active
regions.

For this study, we use the 15 active regions from Warren
et al. (2012), who used these regions to study the dependence
of active region temperature structure on the properties of the
magnetic field. These regions cover about an order of
magnitude in the total wunsigned magnetic flux,
4 x 10*'-3 x 10** Mx., covering almost the full range of
typically observed active regions. Information on these regions
is listed in Table 1. Note that the times correspond to the
midpoints of raster observations with the EUV Imaging
Spectrometer on Hinode (EIS; Culhane et al. 2007). For each
region, we have manually selected a field of view that includes
all of the flux from the active region core (see Figure 1). Using
the field of view and time, we downloaded cutouts from the
SDO Joint Science Operations Center® for a one-hour interval
beginning with the time listed in the table. The downloads
included all of the AIA EUV channels (171, 193, 211, 335, 94,
131, 304) at 12 s, cadence, the AIA UV channels (1600, 1700)
at 24 s cadence, the HMI line-of-sight magnetograms at 45 s
cadence, and the HMI vector data at 720 s cadence. As noted
earlier, the VCA-NLFF code independently downloads single,
full-disk AIA EUV and HMI line-of-sight images.

For each region, we computed the potential, NLFF, and
VCA-NLFF magnetic field extrapolations and saved the field
components to a file. Example field line calculations for each
region are shown in Figures 8—10. Note that in these plots,
randomly selected field lines are shown. They have not been
matched to any traced loops. Also, field lines for the same
randomly selected seed points are shown in each row.

For each region, we traced loops in the AIA 94, 131, 171,
193, 211, and 335 images. A total of 12202 loop segments
were identified. The loop segments range in projected
length from 17” to about 200”. The distribution of loop
lengths is a power law with an index of approximately three,

® htp:/ /jsoc.stanford.edu/
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Figure 8. Comparison of extrapolation results. HMI and AIA observations are shown for the active regions in this study along with the resulting field lines from each
extrapolation. Field lines are computed using common seed points and projected onto the AIA 171 A image. Note that these field lines are selected randomly and do

not correspond to traced loops. Active regions 1-5 are shown.

consistent with Aschwanden et al. (2013). As is evident in
Figure 3, the majority of the loop segments are identified in
the 171, 193, and 211 channels. These channels generally
show emission from ions formed at about 1 MK, and thus
these comparisons are heavily weighted toward loops at this
temperature.

As mentioned in Section 3.1, we have identified loop segments
independently of the VCA-NLFF algorithm, but there is some
overlap. Of the 12202 loop segments from our sample, only 2613
(about 21%) were also used in optimizing the VCA-NLFF model

parameters, and thus a large fraction of the loops used to evaluate
its performance are independent of the training data.

We computed the mean minimum distance metric for each
traced loop for each of the extrapolations. The result of this
calculation is summarized in Table 2, where we present median
values for all of the loops and for the loops in each AIA
wavelength individually. For this metric, the NLFF extrapola-
tion indicates better fits than both the potential and VCA
models. This is true for both the aggregate value and for each
AIA wavelength considered individually.
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Figure 9. Same as Figure 8 for active regions 6-10.

As discussed previously, the VCA method is optimized
using the misalignment angle, and we also computed this
metric for each traced loop for each of the three extrapola-
tions. As indicated in Table 2, the VCA yields smaller
misalignment angles than either the potential or NLFF
methods, although the differences are generally small. This
calculation assumes that the 3D-loop segments are circular. If
we relax the assumption of circular loop segments and
consider 3D-loop segments that follow paths that minimize
the misalignment angle (see Figure 7), the median misalign-
ment angle is reduced and the NLFF extrapolation yields the
smallest values.

We have also examined the distributions of distances and
misalignment angles for each of the extrapolations. As is
shown in Figure 11, these distributions are not Gaussian, but
resemble log-normal or power-law distributions. Thus, the
median and the mode of each distribution are not the same. The
general trends, however, are consistent with the results
summarized in Table 2. The smallest deviations and the
narrowest distribution is for the distance metric applied to the
vector NLFF extrapolation. The other metrics and extrapolation
techniques generally yield similar results.

The values that we obtain for the misalignment angle are
about a factor of two smaller then what was presented by De
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Figure 10. Same as Figure 9 for active regions 11-15.

Rosa et al. (2009) for a set of stereoscopically observed loops.
Because we obtain a consistent misalignment angle of =210°-
13°, independent of the active region, observed wavelength, or
magnetic field code (PFE, VCA, NLFF), as well as the
consistency of the misalignment angles found in other studies
(see Aschwanden et al. 2016 Table 3), we conclude that the
smaller misalignment angle that we find in this study is not due
to a data selection effect but rather to a limitation of the
stereoscopic triangulation method using STEREO data.
STEREO has a much poorer spatial resolution (pixel size or
1”59 and spatial resolution of ~4”0) than AIA (0”6 pixel size
and spatial resolution of ~1”5). The stereoscopic error itself

was determined to be of order 7°6-11°5 (Table 2 in
Aschwanden & Sandman 2010). This leads to misalignment
angles of 19° 4 3° for the 3D-misalignment angle (Table 3 in
Aschwanden 2013b), or 14°3-19°2 (Section 3.3 in Aschwan-
den et al. 2012a). Thus, magnetic field modeling with AIA data
yields typical misalignment angles of ~10°, while stereo-
scopically triangulated loops using STEREQO data produce a
misalignment angle that is about a factor of two larger.

To further explore the bias toward potential loops imaged in
the AIA 171, 193, and 211 channels, we have attempted to
isolate loops associated with high-temperature emission. To do
this, we have processed the AIA 94 images to remove the
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Figure 11. Distributions of minimum distances and misalignment angles for the three extrapolation methods. In general, the differences among the distributions are
small. The distance metric for the vector NLFF shows the closest matches and has the narrowest distribution.
Table 1
Active Region Summary?*

Region NOAA Date Xcen Yeen Xioy Yiov
1 11082 2010 Jun 19 01:27:42 —308.8 470.8 322 322
2 11082 2010 Jun 21 01:16:27 112.9 423.1 392 392
3 11089 2010 Jul 23 14:32:56 —380.5 —437.9 402 402
4 11109 2010 Sep 29 23:21:34 340.9 245.9 462 462
5 11147 2011 Jan 21 13:40:56 —61.3 470.7 502 502
6 11150 2011 Jan 31 10:55:11 —587.7 —258.0 392 392
7 11158 2011 Feb 12 15:01:57 —306.2 —206.8 352 352
8 11187 2011 Apr 11 11:30:35 —530.3 283.3 512 512
9 11190 2011 Apr 15 00:47:05 190.5 307.5 492 492
10 11193 2011 Apr 19 13:02:06 —13.7 372.0 492 492
11 11243 2011 Jul 02 03:08:12 —357.2 167.9 372 372
12 11259 2011 Jul 25 09:05:57 180.9 3243 322 322
13 11271 2011 Aug 21 11:56:09 —48.7 133.1 552 552
14 11339 2011 Nov 08 18:44:44 51.0 246.0 552 552
15 11339 2011 Nov 10 11:03:29 374.9 256.1 482 482
Note.

 The times listed are for the HMI line-of-sight magnetograms used in the potential extrapolations. The corresponding line-of-sight magnetograms in the Aschwanden
extrapolations and vector magnetograms in the Wiegelmann extrapolations are within 30 s and 7 minutes, respectively, of those listed. Xcen, Yeen are the NOAA active
region coordinates of the patch centers and Xg,, Yo, are the width and height of the fields of view in arcseconds.

contribution from million-degree plasma and isolate the
emission from the Fe XVII 93.92 A line, which is formed at
about 7 MK (see Warren et al. 2012 for details). We re-ran the
loop tracing algorithm on these processed images and identified
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a new set of hot loops. We then matched these loops to the
loops from our original ensemble that used the unprocessed
images. Visual inspection shows that these hot loops are
preferentially found in the active region core.
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Table 2
Summary of Loop Comparisons

Minimum Distance®

Misalignment Angle (Circular)”

Misalignment Angle (Arbitrary)®

Wavelength N Loops PFE VCA NLFF N Loops PFE VCA NLFF N Loops PFE VCA NLFF
All 12202 1.45 1.72 0.70 12202 11.7 11.4 12.3 11779 5.2 5.4 4.8
94 582 1.11 1.25 0.55 582 11.5 10.6 11.9 568 5.2 4.6 4.5
131 1357 1.20 1.52 0.63 1357 10.5 9.9 11.3 1318 4.6 4.8 4.5
171 2759 1.64 1.92 0.80 2759 11.4 10.8 12.1 2634 5.1 5.5 4.8
193 3224 1.57 1.89 0.73 3224 12.1 12.2 12.9 3115 5.5 5.8 49
211 2997 1.50 1.79 0.70 2997 12.2 12.1 12.8 2889 5.4 5.6 49
335 1283 1.15 1.29 0.58 1283 11.8 10.9 11.9 1255 5.1 49 4.5
Hot* 214 1.46 1.31 0.61 214 13.2 11.7 13.0 214 6.2 6.1 49
Notes.

# The median of the mean minimum distance in arcseconds is listed for each extrapolation.

® The median of the misalignment angle in degrees is listed for each extrapolation. The 3D-loop geometry assumed in the VCA is used for all three extrapolations.
¢ The median of the misalignment angle in degrees is listed for each extrapolation. Here, arbitrary curves that follow the minimum misalignment angle are used to
estimate the 3D-loop geometry. In a small number of cases, no curve was found to cross the curtain and those have been excluded from the summary.

4 The hot loops category are loops identified with Fe XVIII emission in the core of the active region.

The results from these hot loops are summarized in the final
row of Table 2. As expected, for this population of hot loops,
the potential extrapolation is outperformed by the NLFF
methods in all metrics. The differences, however, are not
particularly large. Unfortunately, we are able to identify only
214 hot loops in our sample of 12202 total loops.

5. Summary and Discussion

We have presented systematic comparisons between magnetic
field lines computed from three different extrapolation methods
and the topology of coronal loops inferred from AIA images.
The NLFF methods generally provide better matches between
the field and the observed loops. The NLFF method based on
vector data yields the smallest values for the distance metric.
The VCA and NLFF methods yield smaller values for the
misalignment angle than the potential. The differences, how-
ever, are generally small: about 1” for the distance metric and
about 1° for the misalignment angle. A visual inspection of the
best-fit field lines, such as those presented in Figures 4 and 5,
also suggest relatively small differences between the different
extrapolation methods.

This study highlights some fundamental limitations of the
available data and extrapolation methods. Improvements in
these areas should lead to better fits between the extrapolations
and the observed loops.

High-temperature Emission—As noted earlier, the majority
of the identified loops are from emission formed at a about
1 MK. The currents are likely to be strongest along the neutral
line in the active region core, where loops generally have much
higher temperatures. Studies with Hinode /EIS have shown that
these loops are generally about 4 MK (Warren et al. 2011,
2012; Del Zanna 2013). The AIA 94 channel includes Fe X VI,
but this is formed at about 8 MK and strong Fe XVIII emission
is generally only observed in large active regions or in transient
heating events. When Fe XVIII emission is observed, loop
identification may be improved if the AIA 94 images are
processed to remove the contribution from lower temperature
emission (see Teriaca et al. 2012b; Warren et al. 2012).

It is likely that observations from the X-ray Telescope on
Hinode (XRT; Golub et al. 2007) could be used for identifying
high-temperature loops. As mentioned previously, Savcheva &
van Ballegooijen (2009) used XRT images to constrain an
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NLFF model of a sigmoid but selected the observed loops
manually. However, the broad temperature response of XRT
may limit the efficacy of the automated loop tracing.

High spatial resolution observations of emission lines
formed at about 4 MK, such as CaXIV 193.874 A, would be
ideal for identifying the topology of loops in the active region
core. Such an instrument is being considered for a future
Japanese space mission (e.g., Teriaca et al. 2012a).

Chromospheric Emission—Matching chromospheric struc-
tures observed at high spatial resolution with IRIS or a ground-
based observatory is a complementary approach to studying
nonpotential fields in the core of the active region. As such data
is not available for all of the active regions considered here, we
have not pursued this idea here. The limited field of view for
high-resolution data are also an obstacle to applying such data
to this problem. Aschwanden et al. (2016) has done exploratory
calculations for three active regions and was able to find good
agreement between the VCA model and loops traced at
chromospheric temperatures near a sunspot.

Projection Effects—Coronal images show projections of 3D
structures onto a 2D plane, which limits our ability to compare
loops traced in coronal images and field lines. As we have seen,
to project traced loops back to 3D space involves many
assumptions about the field line geometry. Projecting field lines
onto the image plane does not involve any assumptions, but
because we cannot be sure that we are comparing with a
complete loop, it does not yield a unique result.

Observations from multiple viewing angles are an obvious
solution to this problem, and the STEREO (Kaiser et al. 2008)
mission has provided several examples of this (e.g.,
Aschwanden et al. 2012a, 2012b; Aschwanden ;2013b; Chifu
et al. 2015, 2017). Unfortunately, stereoscopic observations
have been very limited and are not likely to be taken
routinely in the near future. Solar Orbiter (Miiller et al. 2013)
will take coronal images from vantage points away from the
Sun—Earth line, but the launch of this mission is still several
years away.

One possibility for reducing projection ambiguities is to
consider time sequences of images rather than individual
snapshots. The time sequences would allow transient bright-
enings to be detected. As it is likely that the brightening occurs
over the entire loop, this would provide the full loop geometry.
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This constrains the search space for potential field line matches
considerably. We are currently investigating this approach
using observations from the AIA 94 channel.

Preprocessing—Chifu et al. (2017) extended the NLFFF
optimization code by implementing the additional constraint to
minimize the angle between the reconstructed local magnetic
field direction and the orientation of 3D loops. In that study, a
number of 3D loops have been stereoscopically reconstructed
from EUV images from three vantage points (STEREO A, B,
and SDO). The method was dubbed S-NLFFF. While in the
current implementation, the method requires 3D loops to
constrain the NLFFF-code, a generalization toward using
traced 2D loops from one image is ongoing work.

Metrics—We have considered two metrics for comparing
field lines to observed loops, the minimum distance and the
misalignment angle. When only 2D-projected loop observa-
tions are available, the minimum distance metric is likely to be
the most useful. This metric identifies the topological feature of
interest (the field line) using the observations directly and
avoids the intermediate step of estimating the 3D-loop
geometry. Future studies involving 2D observations should
use this metric along with the misalignment angle.
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