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Abstract An analytical approximation of a nonlinear force-free magnetic field (NLFFF)
solution was developed in Paper I, while a numerical code that performs fast forward-fitting
of this NLFFF approximation to a line-of-sight magnetogram and coronal 3D loops has been
described and tested in Paper II. Here we calculate the free magnetic energy Efree = EN −EP,
i.e., the difference of the magnetic energies between the non-potential field and the potential
field. A second method to estimate the free energy is obtained from the mean misalignment
angle change �μ = μP − μN between the potential and non-potential field, which scales as
Efree/EP ≈ tan2 (�μ). For the four active regions observed with STEREO in 2007 we find
free energies in the range of qfree = (Efree/EP) ≈ 1 % – 10 %, with an uncertainty of less
than ±2 % between the two methods, while the free energies obtained from 11 other NLFFF
codes exhibit a larger scatter of about ±10 %. We also find a correlation between the free
magnetic energy and the GOES flux of the largest flare that occurred during the observing
period, which can be quantified by an exponential relationship, FGOES ∝ exp (qfree/0.015),
implying an exponentiation of the dissipated currents.

Keywords Sun: corona · Sun: magnetic fields

1. Introduction

The free magnetic energy is the maximum amount of energy that can be released in an active
region of the solar corona, such as during a solar flare, a filament eruption, or a coronal mass
ejection (CME). Therefore, it is important to design reliable methods and tools that can
calculate the amount of free energy to quantify the energy budget in a catastrophic energy-
release event, as well as for estimating upper limits in forecasting individual events in real-
time. Traditionally, the free energy is calculated by computing the non-potential field BN(x)

with a numerical nonlinear force-free field (NLFFF) code and a potential field BP(x) for the
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370 M.J. Aschwanden

same photospheric boundary data B(x, y, zphot), so that the difference of the magnetic field
energy density integrated over a volume V that encompasses the active region of interest
can be quantified as

Efree = 1

8π

(∫
B2

N(x)dV −
∫

B2
P(x)dV

)
. (1)

This standard method may not necessarily reflect the correct amount of maximum free
energy released during a solar flare, since the magnetic field in the photospheric bound-
ary B(x, y, zphot) may change during a flare (e.g., see measurements by Wang, Ewell,
and Zirin, 1994; Wang et al., 2002, 2004; Wang, Liu, and Wang, 2013; Wang, 1997,
2006; Wang and Liu, 2010). Another problem with NLFFF codes using the photospheric
vector field is the non-force-freeness of the lower chromosphere (Metcalf et al., 1995;
DeRosa et al., 2009), which can be ameliorated, however, by preprocessing the magnetic
boundary data with chromospheric field measurements (e.g., Metcalf, Leka, and Mickey,
2005; Jing et al., 2010), or by a multi-grid optimization that minimizes a joint mea-
sure of the normalized Lorentz force and the divergence of the magnetic field, as pro-
posed by Wiegelmann (2004) and applied by Jing et al. (2009). A quantitative com-
parison of NLFFF computation methods, however, revealed a substantial scatter of free
energies in the order of ≈±10 % (of the potential energy), depending on the nu-
meric code, the boundary specifications, and the spatial resolution (Schrijver et al., 2006;
DeRosa et al., 2009). Alternatively, some studies showed that the free energy is better esti-
mated by the minimum-energy state above the linear force-free field with the same magnetic
helicity (Woltjer, 1958; Régnier and Priest, 2007). Since NLFFF calculations take very long
computing times for forward-fitting tasks to coronal constraints, which requires many itera-
tions (for an overview and discussion of different numerical methods see recent reviews by
Aschwanden (2004) or Wiegelmann and Sakurai (2012)), faster non-numerical methods are
desirable. Some proxy of the active region’s free magnetic energy has been defined based
on the twist and magnetic field orientation near the neutral line (e.g., Falconer, Moore, and
Gary, 2006, 2011).

Free magnetic energies have been calculated for a variety of solar phenomena, for in-
stance for the evolution of the free magnetic energy during flux emergence and cancellation,
using NLFFF codes (e.g., Fang et al., 2012), for the evolution of active regions (e.g., Ku-
sano et al., 2002), for helmet-shaped streamer configurations (Choe and Cheng, 2002), or
for breakout CMEs, using MHD simulations (e.g., DeVore and Antiochos, 2005). Theo-
retical studies quantify the evolution of free magnetic energy for dipolar (Régnier, 2009)
and quadrupolar magnetic configurations with a null-point, using different force-free mod-
els (Régnier, 2012).

An analytical approximation of a nonlinear force-free magnetic field (NLFFF) solution
was developed in Paper I (Aschwanden, 2012), while a numerical code that performs fast
forward-fitting of this NLFFF approximation to coronal 3D loops and a line-of-sight mag-
netogram has been described and tested in Paper II (Aschwanden and Malanushenko, 2012).
In this Paper III of the series we calculate the free energy, which is generally defined by the
difference of the magnetic energies between the non-potential field and the potential field
(Equation (1)). We calculate free energies from simulated data (from Paper II), from the
analytical NLFFF solution of Low and Lou (1990), from active region NOAA 10930 during
an X3.4 flare modeled by Schrijver et al. (2008) and Malanushenko et al. (2012), and from
stereoscopically triangulated loops observed with STEREO (Aschwanden et al., 2012). Sec-
tion 2 describes the analytical treatment, Section 3 the application to simulated datasets and
observations, Section 4 contains a discussion, and Section 5 the conclusions.
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Nonlinear Force-Free Magnetic Field Approximation III. 371

2. Analytical Formulation

2.1. The NLFFF Approximation

In Paper I (Aschwanden, 2012) we derived an analytical approximation of a nonlinear force-
free field (NLFFF) solution, which fulfills Maxwell’s divergence-free equation (∇ · B = 0)
and the force-free equation (∇ × B) = α(x)B with second-order accuracy (of the force-free
parameter α). The analytical approximation can be specified by a radial field Br and an
azimuthal field component Bϕ ,

Br(r, θ) = Bj

(
d2

r2

)
1

(1 + b2r2 sin2 θ)
, (2)

Bϕ(r, θ) = Bj

(
d2

r2

)
br sin θ

(1 + b2r2 sin2 θ)
, (3)

Bθ(r, θ) ≈ 0, (4)

α(r, θ) ≈ 2b cos θ

(1 + b2r2 sin2 θ)
, (5)

where (r, ϕ, θ ) are the spherical coordinates of a single magnetic field component (Bj , xj ,

yj , zj , bj ) with a unipolar magnetic charge Bj that is buried at position (xj , yj , zj ), has a
depth d = 1 − [x2

j + y2
j + z2

j ]1/2, a vertical twist α = 2bj , and r = [(x − xj )
2 + (y − yj )

2 +
(z − zj )

2]1/2 is the distance of an arbitrary coronal position (x, y, z) to the subphotospheric
location (xj , yj , zj ) of the buried magnetic charge. The force-free parameter α is expressed
in terms of the parameter b, which quantifies the number Ntwist of full-twist turns over a
(loop) length L,

b = 2πNtwist

L
. (6)

This analytical approximation is divergence-free and force-free to second-order accuracy in
the parameter (br sin θ), which is approximately proportional to the force-free parameter α

as defined by Equation (5).
A general magnetic field configuration can be composed by superposing Nm twisted

magnetic field components,

BN(x) =
Nm∑
j=1

Bj (x), (7)

which also fulfills the divergence-free and force-free condition with second-order accuracy
in α (or b).

2.2. The Free Magnetic Energy of a Single Twisted Component

We now calculate the free magnetic energy dEfree(x) at location (x) for the field that results
from a single twisted (buried) magnetic charge as defined by Equations (1) to (6). Since the
radial Br and azimuthal components Bϕ are always orthogonal to each other (Figure 1), we
can calculate the total non-potential magnetic field strength BN at every given point (r, ϕ)

simply from the sum of the squared components Br and Bϕ ,

BN = (
B2

r + B2
ϕ

)1/2 = Bj

(
d2

r2

)
1√

(1 + b2r2 sin2 θ)
, (8)
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372 M.J. Aschwanden

Figure 1 Diagram of the
non-potential field vector BN,
which is composed of the two
orthogonal components of the
azimuthal field vector Bϕ and the
radial field vector Br , subtending
an angle θ .

while the field strength BP of a potential field corresponds to the radial component Br (of a
single buried magnetic charge, Equation (2)),

BP = Br = Bj

(
d2

r2

)
1

(1 + b2r2 sin2 θ)
, (9)

and thus the free energy dEfree(x) is just the magnetic energy associated with the azimuthal
field component Bϕ , with Equations (8) and (9),

dEfree(x) = dEN(x) − dEP(x) = 1

8π

[
Br(x)2 + Bϕ(x)2

] − 1

8π
Br(x)2 = 1

8π
Bϕ(x)2. (10)

This definition of the free magnetic energy dEfree(x) fulfills the following conditions:

i) Positivity constraint: The free energy is positive for every nonpotential field at any lo-
cation x, i.e., dEfree(x) > 0, since B2

ϕ(x) ≥ 0 and dEfree(x) ∝ B2
ϕ(x) according to Equa-

tion (10).
ii) Additivity of energies and orthogonality of magnetic field components: The nonpotential

energy corresponds to the sum of the potential energy and the free energy dEN(x) =
dEP(x)+dEfree(x) according to Equation (1) and Figure 1. Since the energies scale with
the square of the magnetic field components, i.e., dEN(x) ∝ BN(x)2, dEP(x) ∝ Br(x)2,
and dEfree(x) ∝ Bϕ(x)2, the Pythagoras theorem can be applied and it follows that Br ,
Bϕ , and BN form a rectangular triangle, with Bϕ perpendicular to the potential field
component BP = Br .

iii) Positive scaling with force-free parameter: The free energy quantifies an excess of non-
potential magnetic field energy compared with the potential field energy, and thus should
have a positive scaling with the force-free parameter α. Since the free energy scales
proportional to the square of the azimuthal magnetic field component (Equation (10)),
we have a positive scaling, which is approximately dEfree(x) ∝ b2 ∝ α2 (Equations (3)
and (5)).

iv) Potential field limit: The free energy vanishes asymptotically (dEfree(x) → 0) with van-
ishing force-free parameter |α| → 0 or |b| → 0, with the potential field being the limit,
dEN(x) → dEP(x).

v) Finiteness of nonpotential energy: The total nonpotential magnetic energy integrated
over an arbitrary large height r converges to a finite value, E(r → ∞) = Emax. We can
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prove the finiteness of the potential energy for a single magnetic charge, which has a
square-dependence of the magnetic field, B(r) ∝ r−2, yielding a 4th-power dependence
of the magnetic energy dEP(r) ∝ B(r)2 ∝ r−4, and thus a 3th-power dependence for the
integrated magnetic energy, EP,tot ∝

∫
dEP(r)dr ∝ r−3. For a finite amount of twist and

a finite number of magnetic sources, it can be shown that the integral of the resulting
nonpotential energy is also finite.

2.3. The Free Magnetic Energy of Multiple Twisted Components

While the foregoing definition of the free energy is calculated for a single twisted (buried)
magnetic charge, how can it be generalized for a superposition of an arbitrary number of
magnetic charges, as defined in Equation (7)? The sum of the magnetic field contributions
from each buried magnetic charge component Bj (x) add up to the non-potential field vector
BN(x), which can be decomposed into two orthogonal components B‖(x) and B⊥(x) in every
point of space (x),

BN(x) =
Nm∑
j=1

Bj (x) = B‖(x) + B⊥(x), (11)

where the parallel component is aligned with the potential field direction, B‖ ‖ BP, and the
perpendicular component is orthogonal to the potential field direction, B⊥ ⊥ BP. For a single
(twisted) magnetic component the parallel component B‖ is identical with the radial compo-
nent Br , and the perpendicular component B⊥ is identical with the azimuthal component Bϕ

(Figure 1). The three magnetic field components B‖ = BP,B⊥, and BN are then associated
each with one of the three energy components,

dEfree(x) = (1/8π)B2
⊥(x),

dEP(x) = (1/8π)B2
‖ (x),

dEN(x) = (1/8π)
[
B2

‖ (x) + B2
⊥(x)

]
.

(12)

Alternatively, the magnetic energy dEP(x) of the potential field can be computed by using
current-free magnetic field components (Bj , xj , yj , zj , bj = 0) straightforward with Equa-
tion (1), and the magnetic energy dEN(x) of the non-potential field with the current com-
ponents (Bj , xj , yj , zj , bj 
= 0) with Equation (1) as well, which yields the free energies
(Efree = EN − EP), after volume integration. Both methods are fitting the same line-of-sight
component of the photospheric boundary Bz(x, y, zphot) given by the magnetogram, while
the non-potential magnetic field affects the transverse field components Bx(x, y, zphot) and
By(x, y, zphot), which are not used as a boundary condition in our forward-fitting method.

2.4. Free Energy Estimated from Misalignment Angle with Loops

An alternative method is to estimate the free energy in an active region from the misalign-
ment angle μ between the potential field and the observed coronal loops, or the best-fit
non-potential field. Using the coronal loops as a proxy for the non-potential field, this would
provide a very fast method that requires only the computation of a potential field, supposing
we have the 3D coordinates of coronal loops, e.g., from stereoscopic triangulation. Since the
mean azimuthal field component is B⊥ = BN sin (�μ) and the mean radial (potential) field
component is B‖ = BN cos (�μ), the non-potential energy ratio qμ = EN/EP follows then
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directly, using the definition of Equation (11), for the free energy,

qμ = EN

EP
= B2

⊥ + B2
‖

B2
‖

= 1 + tan2 (�μ), (13)

where the relative misalignment angle �μ is defined as the difference between the (median)
potential μP and (median) non-potential field directions μN,

�μ = μP − μN. (14)

Ideally, if the NLFFF forward-fitting code perfectly matches the coronal loops (with μN ≈
0), the relative misalignment angle of the potential field to the loops can be used, �μ ≈
μP. However, in reality there is always a significant difference between the best-fit NLFFF
solution and the observed loop data, either due to stereoscopic measurement errors or to an
additional field misalignment that cannot be described with the particular parameterization
of our NLFFF approximation.

Ideally, if the NLFFF forward-fitting code matches the coronal loops perfectly (with
μN ≈ 0), and thus the relative misalignment angle of the potential field to the loops can
be used, �μ ≈ μP. However, in reality there is always a significant difference between the
best-fit NLFFF solution and the observed loop data, either due to stereoscopic measurement
errors or due to an additional field misalignment that cannot be described with the particular
parameterization of our NLFFF approximation.

3. Numerical Tests and Results

We now test the calculation of the free magnetic energy with the definitions given in Equa-
tions (12) and (13) for four different datasets, using i) simulated data produced by our
analytical NLFFF approximation, ii) the NLFFF solution of Low and Lou (1990) with a
known exact analytical solution, iii) active region NOAA 10930 during an X3.4 flare mod-
eled Schrijver et al. (2008) and Malanushenko et al. (2012), and iv) stereoscopic data from
four observed active regions.

3.1. Tests with Simulated Data (P1 – N12)

We simulated six cases of potential fields (shown in Figure 3 of Paper II), and six cases with
non-potential fields (Figures 2 and 3), which are similar to the cases N7 to N12 in Paper
II, except that we reduced the amount of twist by a factor of five to better compare them
with observations of real active regions, which have free energies of about <10 %. We used
the parameterization of our analytical NLFFF approximation described in Paper I, which
contains 1, 2, 4, and 10 magnetic source components with variable vertical twist, labeled as
cases P1 – P6 and N7 – N12. We integrated the non-potential magnetic energy EN in a box
that covers the displayed field-of-view centered at the center of the solar disk, which has
a height range of h = 0.15 solar radii above the photosphere. The values of the potential
energies EP and the ratio of the non-potential to the potential energy of the model (qmodel),
or of the fit (qfit = EN/EP), are listed in Table 1. The free energy is Efree = EN − EP =
EP(qN − 1).

Table 1 demonstrates several results. First, the misalignment angle between the forward-
fitted non-potential field and the simulated loops is significantly smaller (μN = 1.4◦ ± 0.8◦)
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Figure 2 Forward-fitting of simulated non-potential field data (cases N7 – N9). Each panel shows the
line-of-sight magnetogram (gray), simulated coronal loops (the targets of the forward fit) (blue), and magnetic
field lines of a theoretical model (red), either the potential field constrained by the line-of-sight magnetogram
(left panels), or the forward fit of the NLFFF approximation (right panels).

in all 12 cases (P1, . . . ,N12) than the initial potential field misalignment angle μP =
9.6◦ ± 8.5◦, which confirms a satisfactory convergence of the forward-fit to the simu-
lated target loops. Second, all ratios of the non-potential to potential energies EN/EP are
higher than one, which means that the free energy Efree = EN − EP is always positive
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376 M.J. Aschwanden

Figure 3 Forward-fitting of cases N10 – N12. Representation similar to Figure 2.

with the definition given in Equation (12). Third, all 12 simulated cases agree in the non-
potential energy ratio with the simulated input model, i.e., qfit = qmodel = EN/EP with an
accuracy better than 10−5, which also confirms the perfect convergence of the forward-
fit algorithm. The non-potential-field cases (N7 – N12) have free energies in the range of
qfit = EN/EP = 1.010 – 1.163, or up to 16 % of the potential-field energy, which are also
retrieved with an accuracy better than 10−5. We also compare the non-potential energy ra-
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Table 1 Magnetic energy calculations are listed for 20 cases, including six potential-field cases (P1 – P6),
six non-potential-field cases (N7 – N12), the Low and Lou (1990) cases (L1, L2), the Schrijver et al. (2008)
cases (S1, S2), and four stereoscopically observed active regions (A, B, C, and D), specified by the number of
magnetic charges (Nm), the fraction of magnetic energy captured by the model (qE), the number of simulated
loops Nloop, the potential energy EP (corrected by the factor qE ), the median misalignment angle μP of the
potential field, the median misalignment angle μN after forward-fitting of the NLFFF model, the predicted
energy ratio qμ = (1 + tan2 (�μ)) based on the misalignment-angle change �μ = μP − μN, the forward-
fitted non-potential energy ratio qfit = EN/EP, and the volume-integrated non-potential magnetic energy ratio
of the model qmodel = Emodel/EP, with values computed by Anna Malanushenko (private communication,
2012) using the Low and Lou (1990) data (a), the value of 3D-fits labeled as II.b in Tables 3 and 4 of
Malanushenko et al. (2012) (b), and the value of the Wh+ code with the smallest misalignment angle μ = 24◦
in Table 1 of DeRosa et al. (2009) (c).

Case Nm(qE) Nloop μP μN EP
(1032 erg)

qμ qfit qmodel

P1 1(1.000) 49 0.5 0.0 4.65 1.000 1.000 1.000

P2 2(1.000) 121 1.8 1.2 5.84 1.000 1.000 1.000

P3 4(1.000) 121 2.1 1.4 4.27 1.000 1.000 1.000

P4 10(1.000) 121 2.5 1.3 14.6 1.000 1.000 1.000

P5 10(1.001) 121 3.7 1.4 12.9 1.002 1.000 1.000

P6 10(0.998) 121 3.3 1.9 6.80 1.001 1.000 1.000

N7 1(1.000) 49 18.8 0.2 4.65 1.114 1.010 1.010

N8 2(1.000) 121 10.4 1.2 5.84 1.026 1.009 1.009

N9 4(1.000) 121 13.0 1.8 4.27 1.039 1.016 1.016

N10 10(1.000) 121 17.4 3.1 14.6 1.065 1.082 1.082

N11 10(1.001) 121 17.2 1.1 12.9 1.084 1.113 1.113

N12 10(0.998) 121 25.3 1.9 6.80 1.188 1.163 1.163

L1 100(0.913) 133 14.7 4.8 0.246 1.030 1.023 1.129a

L2 100(0.910) 35 3.9 1.6 0.028 1.002 1.001 1.091a

S1: 2006/12/12 200(0.860) 331 37.3 14.4 18.3 1.179 1.112 1.21 ± 0.05b

S2: 2006/12/13 200(0.878) 98 27.3 13.4 17.8 1.061 1.104 1.08 ± 0.01b

A: 2007/04/30 100(0.854) 200 23.8 21.4 12.7 1.002 1.006 1.030c

B: 2007/05/09 100(0.807) 70 21.2 17.9 1.08 1.003 1.023

C: 2007/05/19 100(0.784) 100 41.3 22.1 3.47 1.121 1.085

D: 2007/12/11 100(0.810) 87 22.1 14.7 7.83 1.017 1.044

tios calculated from the forward-fit (qfit) that were estimated from the median misalignment
angles (qμ; Equation (13)) and find an agreement of qμ/qfit = 1.02 ± 0.05 between the two
methods.

We also tested the finiteness of the non-potential energy. In Figure 4 we plot the height-
integrated total non-potential energies EN(r) as a function of the height limit r for the six
cases N7 – N12 (Table 1) and find that each one approximately follows an exponential height
dependence (dashed curves in Figure 4),

EP(r) ≈ Emax

[
1 − exp

(
− r − 1

λ

)]
, (15)
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378 M.J. Aschwanden

Figure 4 Height dependence of the non-potential energy EN(h) integrated over a volume from height
r = 1.0 to r = rmax with rmax = 1.15 solar radii for the six non-potential cases (N7 – N12 in Table 1).
An exponential function is fitted in the upper half height range r > 1.075 (dotted line).

with the finite limit E(r → ∞) = Emax, which confirms the convergence of the code. In our
calculations we generally used a height limit of hmax = 0.15 solar radii, which corresponds
to about two density scale heights of Te = 1.0 MK plasma, or four emission-measure scale
heights.

3.2. Tests of the Low and Lou (1990) NLFFF Solution

An analytically exact solution of an NLFFF model was derived by Low and Lou (1990),
described also in Malanushenko, Longcope, and McKenzie (2009). The particular solutions
we used are defined by the parameters (a = 0.6, n = 2.0) for L1, and (a = 0.01, n = 1.0)
for L2, where a is the Grad–Shafranov constant, n is the harmonic number of the Legendre
polynomial, and additional parameters are the depth l of the source below the photosphere
and the inclination angle φ of the axis of symmetry). Forward-fits of our analytical NLFFF
approximation to the exact NLFFF solution of Low and Lou (1990) are shown in Figure 5
(top and middle), where we used a computation box of (100 × 100 × 75), with a pixel
size of �x = 0.002 solar radii and a height range of hmax = 75�x ≈ 0.15 solar radii. The
forward-fit was accomplished by using the line-of-sight magnetogram at a planar surface
(Bz(x, y, z) = 1) and a set of Nloop = 133 (L1) and Nloop = 35 (L2) target field lines that
mimic coronal loops. The misalignment angle was reduced from μP = 14.7◦ to μN = 4.8◦
for L1, and from μP = 3.9◦ to μN = 1.6◦ for L2, which means that the forward-fitting re-
duces the misalignment by about a factor of 3. The resulting non-potential energy ratios are
listed in Table 1, yielding free energies of 2.3 % for L1, and 0.1 % for L2. These free en-
ergies are significantly below the theoretical values calculated in Malanushenko, Longcope,
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and McKenzie (2009), where values of 13 % and 9 % are quoted (listed under qmodel in
Table 1), although the misalignment of the forward-fitted field is quite satisfactory. The rea-
sons for the mismatch in the free energy for this particular case is not fully understood,
since the convergence behavior of our code seems to be no problem for unique solutions
(such as the simulated cases N7 – N12). We suspect that the parameterization of our NLFFF
approximation, which consists of a number of buried point-like magnetic sources, is not ad-
equate or suitable to represent the analytical Low and Lou (1990) solution, which consists
of extended, smooth magnetic distributions with elliptical shapes, parameterized in terms of
Legendre polynomials. It is conceivable that the representation of Legendre polynomials by
(spherically symmetric) point sources leads to clustering of closely spaced point sources,
which cancels the non-potential (azimuthally twisted) field components.

3.3. Tests of the Schrijver et al. (2008) Case

The magnetic field of active region NOAA 10930, observed with TRACE, Hinode/XRT, and
Hinode/SOT on 12 December 2006, 20:30 UT before a GOES-class X3.4 flare (case S1),
and on 13 December 2006, 03:40 UT after the flare (case S2), has been extensively modeled
with NLFFF codes (Schrijver et al., 2008; Malanushenko et al., 2012). We show a forward-
fit of our NLFFF approximation in Figure 5 (bottom panels) to a set of loops (i.e., closed
field lines that are randomly chosen from an NLFFF solution computed by Malanushenko
et al., 2012). The accuracy of the forward-fitting mostly depends on the number of the mag-
netic field components Nm, but generally reaches asymptotically a flat plateau for Nm � 100
(Aschwanden et al., 2012; Figure 10). For this magnetically very complex active region
we needed Nm = 200 magnetic source components to reach the plateau, while Nm � 100
was sufficient for all other cases. Here, the median misalignment angle of μP = 37.3◦
for the potential field was reduced by about a factor of 2.6 to μN = 14.4◦ for the best-
fit non-potential NLFFF solution (S1 in Table 1). We measure a potential-field energy of
EP = 1.83 × 1033 erg before the flare (S1), and EP = 1.78 × 1033 erg after the flare (S2),
which means a small difference of ≈2.6 %. For the non-potential magnetic energy ratio we
measure qfit = EN/EP = 1.112 before the flare and qfit = 1.104 after the flare, and similar
values with the misalignment method, i.e., qμ = 1.179 and qμ = 1.061. Thus the total non-
potential energy decreases by �EN = 0.7 × 1032 erg (≈5 % according to the forward-fit
method), or by �EN = 2.7 × 1032 erg (≈13% according to the misalignment method).

From the same observing times the free-energy ratio was measured with 14 different
NLFFF codes in Schrijver et al. (2008; Table 1 therein), which yield energy ratios of
EN/EP,free = 1.05 ± 0.05 before the flare, and EN/EP,free = 1.16 ± 0.14 after the flare, if we
average all methods with equal weight. However, the most reliable NLFFF method among
them, according to a quality assessment by visual inspection of five magnetic features seems
to be the Wh+

pp NLFFF code, which yields an energy ratio of EN/EP,pre = 1.32 before the
flare and EN/EP,pre = 1.19 after the flare, that is, a decrease of 13 % in the free energy,
corresponding to a drop of �Efree ≈ 3 × 1032 erg in free energy, similar to our measurement
with the misalignment method (Efree = 2.7 × 1032 erg or 13 %). Similarly, Malanushenko
et al. (2012; cases with 3D fits labeled II.b in Table 1 therein) calculated energy ratios of
EN/EP = 1.21 ± 0.05 before the flare and EN/EP = 1.08 ± 0.01 after the flare, correspond-
ing to a drop of 13 % in the free energy.

Thus all three studies agree with a drop in free energy, by an amount of 5 % – 13 %
according to our two methods, versus ≈13 % for the most reliable NLFFF codes, while
lower free energy values and larger misalignment angles result for the other NLFFF codes
(Table 1 in Schrijver et al., 2008). Thus our two methods appear to be commensurable with
the most reliable NLFFF codes.
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3.4. Tests with Stereoscopic Observations

We now calculate the free magnetic energy for four active regions (Table 1) that have all
been observed with STEREO and were subjected to previous magnetic modeling, which we
label as active regions A, B, C, and D. All four active regions have been subject of potential-
field modeling using stereoscopic data, including potential-field stretching (Sandman et al.,
2009), buried magnetic charges (Aschwanden and Sandman, 2010), or buried dipoles
(Sandman and Aschwanden, 2011), and nonlinear force-free field modeling (Aschwanden
et al., 2012).

Active region NOAA 10953, 30 April 2007 (A) has been observed during a flare-energy
build-up phase, and a flare trigger by magnetic reconnection at a 3-D null point of a sepa-
ratrix surface was identified (Su et al., 2009). The magnetic modeling of this active region
has been scrutinized with 11 different NLFFF codes, using SoHO/MDI, Hinode/SOT-SP,
XRT, and STEREO/EUVI data (DeRosa et al., 2009; Su et al., 2009). For this active region
(shown in Figure 6, top panels) we measure a potential-field energy of EP = 1.27 × 1033 erg
on 30 April 2007, while Su et al. (2009) measure EP = 0.96 × 1033 erg on 2 May 2007,
which agrees within ≈30%, over a time difference of two days. For the non-potential en-
ergy ratio we find EN/EP = 1.006 on 30 April 2007, while Su et al. (2009) find ≈1.1
on 2 May 2007, in the central core of the active region, a few hours before a GOES-class
B3.8 and C8.5 flare. Their higher value could thus be attributed to flaring activity. Extensive
NLFFF modeling was carried out for 30 April 2007 at 22:24 UT, using Hinode vector mag-
netograph data (DeRosa et al., 2009). The free energies obtained from 11 different NLFFF
codes scatter in the range of EN/EP = 0.87 – 1.24, with a value of 1.03 for the Wh+ code
with the smallest misalignment angle of (μ = 24◦) with respect to the stereoscopically trian-
gulated loops. Including the uncertainties of the boundary conditions in the NLFFF code, a
self-consistent NLFFF solution with a non-potential energy ratio of EN/EP ≈ 1.08 was ob-
tained, with a potential-field energy of EP = 0.84 × 1033 erg (Wheatland and Leka, 2011).

Part of the discrepancy can likely be explained by the different field-of-view, because
the Hinode field-of-view used in DeRosa et al. (2009) only covers the central part of the
active region, while our field-of-view encompasses the entire active region. Accordingly,
we calculated the magnetic energy in the same Hinode field-of-view as used in DeRosa
et al. (2009), but we found almost identical energy ratios. That our value is lower than
that obtained with the other NLFFF codes could also be attributed to an underestimation of
the twist (and thus non-potential energy) in the core of the active region, where stereoscopic
loop triangulation is very sparse due to confusion of loops with “moss” background. If this is
true, we generally expect that the avoidance of twisted core structures leads to a stereoscopic
undersampling bias, resulting in lower estimates of the free magnetic energy. We also have
to keep in mind that the free-energy ratio for this active region is the lowest among the four
active regions and thus has the largest relative uncertainty.

Active region NOAA 10953, 9 May 2007 (B) was subject to the first 3D reconstruction
with STEREO (Aschwanden et al., 2008a), stereoscopic electron density and temperature
measurements (Aschwanden et al., 2008b), and instant stereoscopic tomography and DEM
modeling (Aschwanden et al., 2009). This active region exhibits the simplest bipolar mag-
netic configuration among all four analyzed active regions and we find a non-potential en-
ergy ratio of EN/EP = 1.023 (Table 3), i.e., a free-energy ratio of ≈2.3 %.

Active region NOAA 10953, 19 May 2007 (C) has exhibited multiple filament eruptions in
the complex and highly non-potential magnetic configuration during 19 May 2007 (Li et al.,
2008; Liewer et al., 2009; Hara et al., 2011). Some 22 GOES B-class and 2 GOES C-class
flares were detected during the observing period (Li et al., 2008). A filament eruption, ac-
companied by a B9.5 flare, coronal dimming, and an EUV wave was observed and traced
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Figure 5 Forward-fitting of L1, L2 (Low and Lou, 1990), and S1 (Schrijver et al., 2008). Representation
similar to Figure 2.

with 3D reconstruction after 19 May 2007, 13:00 UT (Liewer et al., 2009). The associated
EUV dimming and EUV wave caused by the filament eruption was also analyzed (Attrill
et al., 2009). Plasma motion and heating up to Te = 9 MK was observed for the same flare
around 13:00 UT (Hara et al., 2011). For this active region, which we analyzed at 12:47
UT shortly before the flare (shown in Figure 6, middle panels), we found the largest amount
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Figure 6 Forward-fitting of active region A (30 April 2007), C (19 May 2007), and D (11 December 2007).
Representation similar to Figure 2.

of free energy (9 %), i.e., a non-potential energy ratio of EN/EP = 1.085 (Table 1), which
clearly is associated with the filament eruption and flaring activity after 13:00 UT.

Active region NOAA 10978, 11 December 2007 (D) also appears to have a dominant
bipolar structure (shown in Figure 6, bottom panels), but some apparent currents along the
central neutral line have been modeled with a flux-insertion method (Alex Engell and van
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Figure 7 GOES soft X-ray light curves of the 0.5 – 4 Å (upper curve) and 1 – 8 Å channel (lower curve)
during the time of stereoscopic triangulation and magnetic modeling of the four analyzed active regions. The
flare peak and preflare background levels are indicated with a step function (thick solid lines). The four active
regions are in order of increasing GOES flux (adapted from Aschwanden and Sandman, 2010).

Ballegooijen; private communication 2012). For this active region we found a moderate
amount of free energy (4 %), i.e., a non-potential energy ratio of EN/EP = 1.044 (Table 1),
which is likely to be stored in the flux rope or filament above the central neutral line.

3.5. Correlation of Free Energies with Flare Fluxes

It was noted previously that the level of flaring activity in these four active regions is pos-
itively correlated with the non-potentiality of the magnetic field, evaluated by the average
misalignment angle between a magnetic potential-field model and the observed 3D loop
coordinates. This correlation was interpreted in terms of a relationship between electric cur-
rents and plasma heating (Aschwanden and Sandman, 2010). Since the misalignment angle
is a measure of the magnetic non-potentiality, we expect that there should also be a correla-
tion between the flaring activity level and the free magnetic energy in a flaring active region.
The GOES 0.5 – 4 and 1 – 8 Å light curves are shown in Figure 7. We plot the (preflare
background-subtracted) GOES 0.5 – 4 Å fluxes fGOES of the largest flare that occurred dur-
ing the observing period of an active region versus the free-energy ratio qB,free = EB,free/EP

in Figure 8 (top panel). The preflare background-subtracted GOES fluxes FGOES show a
correlation that can be fitted with an exponential function,

(
fGOES

f0

)
≈ exp

(
qfree

q0

)
(16)

with the constants q0 = 0.015 and f0 = 10−8.4 (W m−2). This result implies that the mag-
nitude of the flare (measured here with the GOES soft X-ray flux) is directly related to the
free magnetic energy stored in the active region before the flare. If we include the X3.4
GOES flare of AR 10930 (Figure 8, case S1), we see that the observed free-energy ratio
qfit = EN/EP − 1 ≈ 0.112 lies along the same trend of the extrapolated exponential func-
tion.

The free energy Efree, an absolute measure of the non-potential energy, also shows a
correlation with the observed GOES flux, approximately following a power-law (Figure 8,
bottom), (

fGOES

f0

)
≈

(
Efree

E0

)3

(17)
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Figure 8 Correlation between the free-energy ratio qfree = Efree/EP (top panel) and the free energy Efree
versus the logarithmic (preflare background-subtracted) GOES 0.5 – 4 Å flux fGOES for active regions A, B,
C, and D, determined with the forward-fit method (diamonds) and with the misalignment method (crosses).
Linear regression fits are indicated between linear and logarithmic values, yielding an exponential function
(top panel) or a power-law function (bottom panel).
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with the constants f0 = 10−8.4 (W m−2) and E0 = 6 × 1030 erg. Only the active region (B)
with the lowest free energy is an outlier to this power-law relationship.

4. Discussion

4.1. Accuracy of the Free Energy

Compared with the other (numerical) NLFFF codes, our analytical NLFFF code has the
following advantages: i) computational speed that allows fast forward-fitting to observed
coronal data; ii) simplicity of explicit analytical formulation; iii) the spherical geometry of
solar surface is fully implemented; and iv) the free energy meets the five criteria of positivity,
additivity of energy (or orthogonality of magnetic field components), positive scaling with
the force-free parameter α, the potential-field limit for small α’s, and finiteness of the non-
potential energy. In this study we calculated the free magnetic energy for four different test
datasets and aim to validate the accuracy.

The first test dataset consists of simulated loops, which are analytically defined by the
same parameterization as the magnetic field lines that are forward-fitted to the simulated
data. We find that the total non-potential magnetic energies EN are retrieved with an ac-
curacy of ≈10−5 for these cases, and the free energy ratios EN/EP are retrieved with an
accuracy of ≈10−3. The high accuracy just confirms the convergence behavior of our code
for a unique solution, as it is the case when the forward-fitting model has the same parame-
terization as the fitted simulation dataset.

The second test dataset consists of an analytical NLFFF solution, which has a completely
different parameterization in terms of Green’s function applied to constant-α point sources
(Chiu and Hilton, 1977; Low and Lou, 1990; Lothian and Browning, 1995; Malanushenko,
Longcope, and McKenzie, 2009; Malanushenko, Yusuf, and Longcope, 2011, 2012). The
particular case described in Low and Lou (1990) consists of three smooth elliptical mag-
netic field concentrations and contains an amount of 13 % free energy, while we recovered
only 2 % with the forward-fit. The poor performance is possibly due to the particular topol-
ogy of the Low and Lou (1990) model, which has extended (elliptical) magnetic field re-
gions parameterized with smooth Legendre polynomials, which cannot be fitted uniquely
with spherical point sources. However, because this case is untypical for solar observations,
which appear to consist of many small-scale flux concentrations that can be easier fitted with
point sources, the accuracy of free energies may be much better for real solar data.

The third data set consists of an observed flaring active region with a large X3.4 flare,
for which an NLFFF solution was calculated. For the free energy we obtain a value of
11 % – 18 % before the flare, which approximately agrees with the most reliable NLFFF
solution (16 % – 32 %) computed in Schrijver et al. (2008) and Malanushenko et al. (2012).
For the sign of the change in non-potential magnetic energy during this X3.4 flare we also
obtain the same sign and a similar value for the decrease of free energy (5 % – 13 %) as the
values computed in Schrijver et al. (2008) and Malanushenko et al. (2012), ≈13 %.

The fourth test dataset consists of four solar active regions, for which the 3D coordinates
of coronal loops could be stereoscopically triangulated. For these four cases we obtained
free energies of 0.6 %, 2.3 %, 4.4 %, and 8.5 %. Only for the first case (active region A,
30 April 2007) we have comparisons with other NLFFF codes. The most reliable NLFFF
code that exhibits the smallest misalignment angle with stereoscopic loops, yield 3 % free
energy, which is close to our result of Efree/EP = 0.6 %. The free energy obtained from all
11 NLFFF solutions yields a much larger scatter, i.e., Efree/EP = 10 % ± 12 % (Table 1 in
DeRosa et al., 2009).
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4.2. Scaling Law Between Magnetic Energy and Flare Soft X-Ray Flux

We found a correlation between the free magnetic energy and the GOES flux of the largest
flare that occurred during the observing period (Equation (16)). Since our non-potential field
solution is parameterized by a vertical twist of magnetic charges, the free energy is directly
proportional to the magnetic energy associated with the azimuthal field component Bϕ , and
thus approximately proportional to the squared force-free α parameter or the number Ntwist

of twists per length unit (Equations (10) and (6)),

qfree(x) = dEN(x)

dEP(x)
− 1 = B2

ϕ

B2
r

= (br sin θ)2 ∝ N2
twist ∝ α2. (18)

On the other side, the stress-induced heating rate EH by Ohmic dissipation (or Joule dissi-
pation) is proportional to the square of the currents (e.g., van Ballegooijen, 1986), which is
also proportional to the square of α (with j/4π = ∇ × B = αB), and thus to the free energy,

EH = j 2

σ
∝ α2B2

4πσ
, (19)

where σ is the classical conductivity. Thus we can express Equation (16) in terms of twists,
currents, or heating rates,

FSXR ∝ exp (qfree) ∝ exp
(
N2

twist

) ∝ exp
(
α2

) ∝ exp
(
j 2/B2

) ∝ exp
(
EH/B2

)
. (20)

Our empirical finding suggests that the energy radiated from the heated plasma is not
just proportional to the heating energy, but “exponentiated” by the current density j ,
the force-free parameter α, the number of twists Ntwist, or the heating rate EH of the
Joule dissipation. This implies a highly nonlinear mechanism that converts vertical twist
into thermal radiation via dissipated currents, as envisioned in stress-induced reconnec-
tion (Sturrock and Uchida, 1981; Parker, 1983). Our linear regression fit of the free
energy versus the GOES flux yields a lower limit of FGOES = 10−8.4, which corre-
sponds to a sub-A flux GOES class event, about the magnitude of the smallest de-
tectable nanoflare. The largest flare among our analyzed cases is an X3.4 GOES-class
flare. Apparently, the exponential relationship between soft X-ray flux and the free en-
ergy discovered here approximately holds even for large GOES X-class flares (Fig-
ure 8). The nonlinearity is also reflected by the fact that the thermal energy of the
soft X-ray flux is not just proportional to the free magnetic energy, but rather ex-
hibits a highly nonlinear power-law function with a power-law index of ≈3 (Equa-
tion (17)).

5. Conclusions

We calculated the total free magnetic energy contained in a coronal volume that encom-
passes an active region for four different kinds of datasets: i) simulated data, ii) data created
from an analytical NLFFF solution by Low and Lou (1990), iii) a flaring active region,
and iv) four active regions observed with STEREO and SOHO/MDI. The free magnetic
energy Efree = EN − EP is defined by the difference of the non-potential (EN) and the po-
tential magnetic field energy (EP). The non-potential magnetic field BN(x) is defined by an
analytical approximation of an NLFFF solution that is parameterized by buried magnetic
charges with vertical twists (derived in Paper I). The numerical code that performs fast
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forward-fitting of magnetic field lines to coronal 3D constraints, such as stereoscopically
triangulated loops, is described in Paper II, along with the simulated data. Our findings are
as follows:

i) A first method to calculate the free energy results from forward-fitting of our analytical
NLFFF approximation by associating the perpendicular magnetic field component B⊥
with the free energy, dEfree = B2

⊥/8π , while the parallel component B‖ is associated
with the potential field energy dEP = B2

‖/8π . This definition of the free energy fulfills
the conditions of i) positivity of free energy, ii) additivity of energies, EN = EP + Efree

and orthogonality B⊥(x) ⊥ BP(x), iii) a positive scaling with the force-free parameter,
dEfree ∝ α2, iv) the potential-field limit, EN(α → 0) = EP, and v) the finiteness of the
nonpotential energy with height h, EN(h → ∞) = Emax.

ii) A second method to estimate the free energy can be obtained from the mean misalign-
ment angle �μ = μP − μN between a potential and a nonpotential field (or stereoscop-
ically triangulated coronal loops). The free energy ratio is then Efree/EP ≈ tan2 (�μ).
We find that the uncertainty of this method amounts to ≈±2 % for the nonpotential
magnetic energy.

iii) Calculating the free energies for the simulated data we find a high fidelity of order
10−5 in retrieving the free energy, which is due to the fact that the simulated data have
the same parameterization as the forward-fitting method, constraining a single best-fit
solution.

iv) Calculating the free energy for the Low and Lou (1990) analytical case, our NLFFF code
finds a significantly lower value than theoretically calculated, probably because of the
special morphopology (parameterized with smooth Legendre functions), which cannot
adequately be fitted with our NLFFF code that is designed for spherical magnetic point
sources, as found in solar magnetograms.

v) Calculating the free energy for observed active regions constrained by the 3D coor-
dinates of stereoscopically triangulated coronal loops, we find free energy ratios of
qfree = Efree/EP ≈ 1 % – 10 %. The uncertainty of the free energy determined with our
forward-fitted NLFFF approximation appears to be at least as good as the uncertainty
among other (standard NLFFF extrapolation) codes.

vi) We find also a correlation between the free magnetic energy Efree and the GOES flux
of the largest flare that occurred during the observing period, which can be quantified
by an exponential relationship, FGOES ∝ exp (qfree), implying an exponentiation of the
dissipated currents.

In summary, this study demonstrates that the free energy in active regions can be cal-
culated and predicted with our analytical NLFFF approximation with an accuracy that is
commensurable with other standard NLFFF codes. Our code has the additional advantages
of computational speed for forward-fitting of coronal data, correct treatment of the curved
solar surface, positivity, and finiteness of free energy. In addition, forward-fitting of our
NLFFF approximation achieves a significantly smaller misalignment angle with respect to
the observed coronal loops (μ ≈ 2◦ – 22◦), compared with the results of other NLFFF codes
(μ = 20◦ – 44◦; DeRosa et al., 2009). The most limiting drawback of our method is the
availability of stereoscopic data with suitable spacecraft separation angle (which was most
favorable in 2007, the first year of the STEREO mission). In future work we attempt to
circumvent the 3D geometry of coronal loops by using only the 2D projections of coronal
loops, which can (manually or automatically) be traced from loop-rich EUV or soft X-ray
images and do not require stereoscopic data at all.
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