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Abstract Based on a second-order approximation of nonlinear force-free magnetic field so-
lutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric
code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or
vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D
coordinates. We test the code here by forward-fitting to six potential field and six nonpoten-
tial field cases simulated with our analytical model, as well as by forward-fitting to an exactly
force-free solution of the Low and Lou (Astrophys. J. 352, 343, 1990) model. The forward-
fitting tests demonstrate: i) a satisfactory convergence behavior (with typical misalignment
angles of μ ≈ 1◦ – 10◦), ii) relatively fast computation times (from seconds to a few min-
utes), and iii) the high fidelity of retrieved force-free α-parameters (αfit/αmodel ≈ 0.9 – 1.0
for simulations and αfit/αmodel ≈ 0.7 ± 0.3 for the Low and Lou model). The salient feature
of this numeric code is the relatively fast computation of a quasi-force-free magnetic field,
which closely matches the geometry of coronal loops in active regions, and complements
the existing nonlinear force-free field (NLFFF) codes based on photospheric magnetograms
without coronal constraints.

Keywords Sun: corona · Sun: magnetic fields

1. Introduction

This paper contains a description of a new numerical code that performs fast forward-fitting
of nonlinear force-free magnetic fields (NLFFF). An alternative NLFFF forward-fitting code
has been pioneered by Malanushenko, Longcope, and McKenzie (2009), which first fits
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346 M.J. Aschwanden, A. Malanushenko

separate linear force-free solutions to individual loops, and in a next step retrieves a self-
consistent NLFFF solution from the obtained linear force-free α-values (Malanushenko,
Yusuf, and Longcope, 2011). Since any calculation of a single NLFFF solution requires
substantial computing time, we explore here a much faster NLFFF forward-fitting code that
retrieves a self-consistent quasi-force-free magnetic field with somewhat reduced accuracy
(i.e., second order in α), but should be still sufficient for most practical applications.

The NLFFF models are thought to describe the magnetic field in the solar corona in
a most realistic way, because the required force-freeness and divergence-freeness fulfill
Maxwell’s electrodynamic equations for a steady-state situation. Except for very dynamic
episodes, such as flares or magnetic reconnection events, the magnetic field corona is
thought to evolve close to a force-free steady state. NLFFF models reveal also the mag-
nitude and topology of field-aligned currents, which are crucial for understanding energetic
processes in the solar corona.

About a dozen NLFFF codes exist that have been described in detail and quantitatively
compared (Schrijver et al., 2006, 2008; Metcalf et al., 1995, 2008; DeRosa et al., 2009),
which includes:

i) divergence-free and force-free optimization algorithms (Wheatland, Sturrock, and
Roumeliotis, 2000; Wiegelmann, 2004),

ii) the evolutionary magneto-frictional method (Yang, Sturrock, and Antiochos, 1986;
Valori, Kliem, and Fuhrmann, 2007), or a

iii) Grad–Rubin-style (Grad and Rubin, 1958) current-field iteration method (Amari, Boul-
mezaoud, and Aly, 2006; Wheatland, 2006; Malanushenko, Longcope, and McKenzie,
2009).

Most of these NLFFF algorithms use a photospheric boundary condition (in form of
a magnetogram or 3D vector magnetograph data) and extrapolate the magnetic field in a
coronal box above the photospheric boundary, by optimizing the conditions of divergence-
freeness and force-freeness (for a general overview of non-potential field calculation meth-
ods see, e.g., Aschwanden, 2004). Only the code of Malanushenko, Longcope, and McKen-
zie (2009) uses loop coordinates as additional constraints from the coronal volume. The
methods have different degrees of accuracy, which can be quantified by an average mis-
alignment angle between the theoretical model and observed (stereoscopically triangulated)
coronal loops, which typically amounts to μ ≈ 24◦ – 44◦ (see Table 1 in DeRosa et al.,
2009). These NLFFF codes are relatively computing-intensive (with typical computation
times of several hours to a over a day), and thus are not suitable for forward-fitting, which
requires many iterations.

In Paper I (Aschwanden, 2012) we derived an approximation of a general solution of a
class of NLFFF models (with twisted magnetic fields) that is suitable for fast forward-fitting
to coronal loops. The accuracy of this “quasi-NLFFF solution” is of second-order in the
force-free parameter α. Obviously, we have a trade-off between accuracy and computation
speed. This fast forward-fitting code can be applied to virtually every kind of simulated
or observed magnetogram or 3D vector magnetograph data, combined with constraints from
coronal loop coordinates, in form of 2D or 3D coordinates as they can be obtained by stereo-
scopic triangulation (e.g., Feng et al., 2007a; Aschwanden et al., 2008a). In this Paper II we
describe this first “fast” NLFFF forward-fitting code and test it with simulated data and
analytical NLFFF solutions, such as obtained from the Low and Lou (1990) model.
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Nonlinear Force-Free Magnetic Field 347

Figure 1 A flow chart of 10 modules of the forward-fitting code that calculates nonlinear force-free field
solutions from various forms of inputs (simulations, analytical solutions, observational data). The 10 modules
are described in Section 2.

2. Numeric Code

A scheme of the numeric code that performs forward-fitting of nonlinear force-free mag-
netic fields (NLFFF) is shown in Figure 1. The 10 different modules of the algorithm can
be organized into three groups: Input modules (1 – 4), forward-fitting modules (5 – 6), and
output modules (7 – 10), which we will describe in some more detail in the following.

(1) Simulated Input This module serves to create test cases and defines a 3D magnetic
field model directly by n = 5Nm free parameters, which includes the surface magnetic field
strength Bj and subphotospheric position (xj , yj , zj ) of the buried magnetic charges, as
well as the force-free parameters αj of the twisted magnetic field for every magnetic charge
j = 1, . . . ,Nm (see definitions in Paper I). We will use models with Nm = 1 – 10 magnetic
charges, so we deal with n = 5 – 50 input parameters per test case. Our models will use
unipolar (Nm = 1), dipolar (Nm = 2), quadrupolar (Nm = 4), and random distributions of
Nm = 10 magnetic charges, where the models with multiple charges are grouped into pairs
of opposite magnetic polarity with identical force-free parameters αj = αj+1 for pairs with
conjugate magnetic polarization (to mimic a nearly force-free field). The purpose of this
simulation module is mostly to test the convergence of the code (with a large number of
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free parameters), so that the output can be compared with a known input, regardless of other
problems, such as the suitability of our parameterization (which is unknown for external
analytical or observational data) or the fulfillment of the divergence-free and force-free con-
ditions (which define a NLFFF solution).

(2) Analytical NLFFF Solutions This module accesses external magnetic field data (in
form of 3D cubes of magnetic field vectors) and extrapolated field lines (which serve
as proxy for coronal loops) from a known analytical NLFFF solution. In our tests de-
scribed here we will use solutions of a particular NLFFF model described in Low and Lou
(1990), which is also summarized and used in Malanushenko, Longcope, and McKenzie
(2009; Appendix A). The Low and Lou field depends on two free parameters in the Grad–
Shafranov equation, which contains a constant a and the harmonic number n of the Leg-
endre polynomial. We will use a model with [a = 0.6, n = 2.0], which are also rendered in
Malanushenko, Longcope, and McKenzie (2009). Since the Low and Lou model represents
an exact analytical solution, we can test whether our code is capable to retrieve the correct
force-free parameters α(x) in the 3D cube, as well as along individual loops, α(s). Further-
more, it will reveal whether our choice of magnetic field parameterization (Bj , xj , yj , zj , αj )

is suitable to represent this particular NLFFF magnetic field, whether the forward-fitting
code converges to the correct solution, and how divergence-free and force-free our analyti-
cal approximation of second order is compared with an exact NLFFF solution.

(3) Observational Data Input This module inputs external data directly, such as line-of-
sight magnetograms Bz(x, y) from SOHO/MDI or SDO/HMI, or alternatively vector fields
[Bx(x, y),By(x, y),Bz(x, y)] if available. In addition, constraints on coronal field lines can
be obtained from stereoscopic triangulation from STEREO/A and B (e.g., Feng et al., 2007a;
Aschwanden et al., 2008a), in form of 3D field line coordinates [x(s), y(s), z(s)], where s is
a field line coordinate that extends from one loop footpoint s = 0 to the other loop footpoint
at s = L, or to an open-field boundary of the 3D computation box. For future applications
we envision also modeling with (automated) 2D loop tracings alone (e.g., from SOHO/EIT,
TRACE, Hinode/EIS, or SDO/AIA), without the necessity of STEREO observations. How-
ever, 2D loop tracings represent weaker constraints than 3D loop triangulations, and thus
may imply larger ambiguities in the NLFFF forward-fitting solution.

(4) Input Coordinate System After we get input from one of the three options (Figure 1
top), we need to bring the input data into the same self-consistent coordinate system.
Since magnetograms are measured in the photosphere, the curvature of the solar surface
has to be taken into account. If a longitudinal magnetic field strength Bz(x, y) is mea-
sured at image position (x, y), the corresponding line-of-sight coordinate z is defined by
x2 + y2 + z2 = R2�, which defines the 3D position of the magnetic field, Bz(x, y, z). No
correction of the coordinates of the magnetogram is needed for simulated and observed
input data. However, the analytical NLFFF solution of Low and Lou (1990) neglects the
curvature of the solar surface and yields the 3D magnetic field vectors B(x) in a Carte-
sian grid. Hence we place the Cartesian Low and Lou solution tangentially to the so-
lar surface and extrapolate the magnetic field vectors to the exact position of the curved
(photospheric) solar surface (assuming an r−2-dependence). After we transformed all in-
put into the same coordinate system, normalized to length units of solar radii (R� = 1)
from Sun center [0,0], we have magnetograms in form of Bz(x, y, zph), or vector magneto-
graph data in the form of [Bx(x, y, zph),By(x, y, zph),Bz(x, y, zph)], with the photospheric
level at zph = √

1 − x2 − y2, and coronal loops in 3D coordinates of [x(s), y(s), z(s)], with
0 < s < L, and L being the length of a loop, or a segment of it.
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(5) Forward-Fitting of Potential-Field Parameters We decompose first the line-of-sight
magnetogram Bz(x, y, zph) into a number of Nm buried magnetic charges, which produce
2D Gaussian-like local distributions Bz(x, y) in the magnetogram, which are iteratively sub-
tracted, while the maximum field strength Bj and 3D position (xj , yj , zj ) is measured for
each component. An early approximate algorithm is shown with tests in Aschwanden and
Sandman (2010; Equation (13) and Figure 3 therein). A more accurate inversion for the de-
convolution of magnetic charges from a line-of-sight magnetogram is derived in Aschwan-
den et al. (2012a; Appendix A and Figure 4 therein). In order to obtain the maximum accu-
racy of this inversion, our code used the parameters (Bj , xj , yj , zj ) of the direct inversion
as an initial guess and executes an additional forward-fitting optimization with the Powell
method (Press et al., 1986), where each of the Nm components is optimized by fitting the
local magnetogram, repeated with four iterations for all magnetic sources. We found that
the parameters converge already at the second iteration, given the relatively high accuracy
of the initial guess. With this step we have already determined 80 % of the n = 5Nm free
parameters (Bj , xj , yj , zj ), αj , j = 1, . . . ,Nm, leaving only the force-free parameters αj to
be determined. If we set αj = 0, we have already an exact parameterization of the 3D po-
tential field Bpot(x), which also predicts the transverse field components Bx(x, y, zph) and
By(x, y, zph) from the line-of-sight magnetogram Bz(x, y, zph).

(6) Forward-Fitting of Non-potential-Field Parameters For the forward-fitting of the
force-free parameters αj for each magnetic charge j = 1, . . . ,Nm we can use either the
constraints of the coronal loops (qv = 0), or the transverse components of the vector-
magnetograph data (qv = 1), or a combination of both (0 < qv < 1), which we select with a
weighting factor qv in the optimization of the overall misalignment angle μ, i.e.,

μ = qvμloop + (1 − qv)μvect. (1)

The forward-fitting of the best-fit force-free parameters αj is performed by iterating the
calculation of the 3D misalignment angle, which is defined for loops (or equivalently for a
vector-magnetograph 3D field vector) by

μloop = cos−1

(
Btheo · Bobs

|Btheo| · |Bobs|
)

, (2)

between the theoretically calculated loop field lines Btheo based on a trial set of parameters
(Bj , xj , yj , zj ), αj , j = 1, . . . ,Nm, and the observed field direction Bobs of the observed
loops. The overall misalignment angle is averaged (quadratically) from Nseg = 10 loop posi-
tions in all Nloop loops. The variation of the trial sets of αj is accomplished by a progressive
subdivision of magnetic zones in subsequent iterations, starting from a single value for the
entire active region (which corresponds to a linear force-free field model), and progressing
with zones that become successively smaller by a factor of 2i−1, with i = 1, . . . ,Niter the
number of iterations. The hierarchical subdivision of α-zones proceeds in order of decreas-
ing magnetic field strength Bj . In each iteration all magnetic zones are successively varied,
and for each zone the force-free parameter αj is varied within a range of |αj | < αmax, un-
til a minimum of the overall misalignment angle μ is found. An example of a hierarchical
subdivision of α-zones in subsequent iterations is shown in Figure 2. For the test images we
have chosen a dimension of Nx = Ny = 60, for which the subdivision of zone radii reaches
a lower limit of one pixel after about five iterations (since 25 = 32 ≈ Nx/2). Thus, after five
iterations, all magnetic sources are fitted individually in each iteration step. Convergence is
generally reached for N iter � 10 – 20 iteration cycles. The computation scales linearly with
the number Nm of magnetic sources and the number Nloop of fitted loops.
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350 M.J. Aschwanden, A. Malanushenko

Figure 2 The scheme of hierarchical subdivision of α-zones (with a common force-free parameter α) is
illustrated for four iteration cycles and Nm = 10 magnetic charges. The number of α-zones increases with
2(i−1) and the radius of an α-zone decreases with a factor 2(1−i) in subsequent iterations i = 1, . . . ,4. The
number of α-zones becomes identical with the number of magnetic charges j = 1, . . . ,Nm after four iteration
cycles. This number of free parameters αi to be optimized is this way is reduced to 1, 2, 6, and 9 in subsequent
iteration cycles for this example.

(7) Calculating Magnetic Field Lines Once our forward-fitting algorithm converged and
determined a full set of n = 5Nm free parameters, (Bj , xj , yj , zj , αj ), j = 1, . . . ,Nm, we can
calculate the magnetic field vector B(x) of the quasi-force-free field at any arbitrary location
x = (x, y, z) in space (see Equations (34) – (42) in Paper I). To calculate the magnetic field
along a particular field line [x(s), y(s), z(s)], we just step iteratively by increments �s,

x(s + �s) = x(s) + �s
[
Bx(s)/B(s)

]
p,

y(s + �s) = y(s) + �s
[
By(s)/B(s)

]
p, (3)

z(s + �s) = z(s) + �s
[
Bz(s)/B(s)

]
p,

where p = ±1 represents the sign or polarization of the magnetic charge, and thus can be
flipped to calculate a field line into opposite direction.

(8) Calculation of 3D Data Cubes By the same token we calculate 3D cubes of magnetic
field vectors B(x) = Bx(xi, yj , zk),By(xi, yj , zk),Bz(xi, yj , zk), in a Cartesian grid (i, j, k)

with i = 1, . . . ,Nx , j = 1, . . . ,Ny , k = 1, . . . ,Nz. The 3D cubes of force-free parameters
α(xi, yj , zk) can be calculated from the B(xi, yj , zk) cubes, for each of the three vector
components,

αx(x) = 1

4π

(∇ × B)x

Bx

= 1

4πBx

(
∂Bz

∂y
− ∂By

∂z

)
, (4)

αy(x) = 1

4π

(∇ × B)y

By

= 1

4πBy

(
∂Bx

∂z
− ∂Bz

∂x

)
, (5)

αz(x) = 1

4π

(∇ × B)z

Bz

= 1

4πBz

(
∂By

∂x
− ∂Bx

∂y

)
, (6)

using a second-order scheme to compute the spatial derivatives, i.e., ∂Bx/∂y = (Bi+1j,k −
Bi−1,j,k)/2(yi+1 − yi−1). In principle, the three values αx , αy , αz should be identical, but
the numerical accuracy using a second-order differentiation scheme is most handicapped
for those loop segments with the smallest values of the B-component (appearing in the
denominator), for instance in the αz component ∝ (1/Bz) near the loop tops (where Bz ≈ 0).
It is therefore most advantageous to use all three parameters αx , αy , and αz in a weighted
mean,

α = αxwx + αywy + αzwz

wx + wy + wz

, (7)
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but weight them by the magnitude of the (squared) magnetic field strength in each compo-
nent,

wx = B2
x , wy = B2

y , wz = B2
z , (8)

so that those segments have no weight where the B-component approaches zero. With this
method, we can determine the force-free parameter α(xi, yj , zk) at any given 3D grid point
[xi, yj , zk], as well as along a loop coordinate, α(s).

The 3D cubes of current densities j = (jx, jy, jz) follow from the definition j/c =
(∇ × B)/(4π) = α(x)B,

j(xi, yj , zk) = cα(xi, yj , zk)B(xi, yj , zk). (9)

(9) Calculation of Figures of Merit Figures of merit (how physical a converged NLFFF
solution is) can be computed for the divergence-freeness ∇ · B = 0 compared to the field
gradient B/�x over a pixel length �x,

Ld = 1

V

∫

V

|(∇ · B)|2
|B/�x|2 dV. (10)

Similarly, the force-freeness can be quantified by the ratio of the Lorentz force, (j × B) ∝
(∇ × B) × B to the normalization constant B2/�x,

Lf = 1

V

∫

V

|(∇ × B) × B|2
|B2/�x|2 dV, (11)

where B = |B|. We calculate these quantities in agreement with the definitions given in
Paper I.

(10) Display of 2D Projections For visualization purposes of the 3D field, of both the
numerically calculated solution (of our quasi-NLFFF model) and for the observed loops, it
is most practical to display the field lines in the three orthogonal projections, i.e., [x(s), y(s)]
for a top-down view, or [x(s), z(s)] and [y(s), z(s)] for side views.

Control Parameter Settings The numeric forward-fitting code has a number of control
parameter settings, which can be changed individually to optimize the performance or the
computation speed of the code. We list the set of standard control parameter settings in
Table 1, which are generally used in this paper if not mentioned otherwise. These parameters
control: the selection of loop field lines (module 1 – 3: Ngrid, �x, Thresh), the decomposition
of the magnetogram (module 4: Nmag, qmag, nsm, iopt), and the forward-fitting of the force-
free α parameter (module 5: Meth, Niter, �s, Nseg, hmax, halt, αmax, acc, qloop, qzone, qv, eps).

3. Potential Field Tests

A first set of six test cases consists of potential field models (with αj = 0), including a
unipolar charge, a dipole, a quadrupole, and three cases with 10 randomly distributed mag-
netic sources, identical to Cases #1 – 3 in Paper I, and to Cases #7 – 9 (but with αj set to
zero). For each of these six cases we show in Figure 3 a set of field lines calculated from
the model (Figure 3, red curves), and a set of field lines obtained from forward-fitting with
our NLFFF code. The agreement between the two sets of field lines can be expressed by
the mean 3D misalignment angle μ (Equation (2)), which is found to be very small, within
a range of μ = 0.0◦ – 6.6◦, or μ = 3.4◦ ± 2.1◦. The individual values are listed in Table 2
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352 M.J. Aschwanden, A. Malanushenko

Table 1 Standard control parameter settings of the forward-fitting code used in the tests of this study.

Parameter Description

Ngrid = 8 Grid size in pixels for loop footpoint selection

�x = 0.0034 Pixel size of computation grid (in solar radii)

Thresh = 0 Threshold of magnetic field [gauss] for loop footpoint selection

Nmag = 10 Maximum number of magnetic charges

qmag = 0.001 Residual limit B/Bmax of magnetogram decomposition

nsm = 0 Smoothing of magnetogram (in number of boxcar pixels)

iopt = 4 Number of cycles for optimization of potential field parameters

Meth = A Method of subdividing magnetic zones

Niter = 20 Maximum number of iteration cycles

�s = �x Spatial resolution along field line (in solar radii)

Nseg = 10 Number of loop segments for misalignment angle calculation

hmax = 3.5�x Maximum altitude range for magnetogram calculation (solar radii)

halt = 0.15 Maximum altitude range for field line extrapolation

αmax = 100 Maximum range for force-free α per iteration (solar radius−1)

acc = 0.001 Relative accuracy in α optimization step

qloop = 0.5 Relative loop position for starting of field line computation

qzone = 0.5 Magnetic zone diminishing factor in subsequent iterations

qv = 0.0 Weighting factor of loop data vs. vector magnetograph data

eps = 0.1 Convergence criterion for change in misalignment angle (deg)

(fourth column). While this mostly represents a test of the accuracy of module 5 (forward-
fitting of potential-field parameters), the algorithm treats the force-free parameter αj as a
variable too, and thus it represents also a test of the accuracy in determining this param-
eter in general. Compared with the theoretical value as it was set in the simulation of the
input magnetogram (αj = 0), the best-fit values are found to be α = −0.09 ± 0.15 (Table 2,
fifth column), which corresponds to �Ntwist = bl/2π = αl/4π = ±0.0018 twist turns over
the length l = 0.05π = 0.157 solar radii of a typical field line (see definitions in Equations
(16) – (17) in Paper I). Thus the uncertainty of our forward-fitting corresponds to less than
±0.2 % of a full twist turn over a loop length. Another measure of the quality of the NLFFF
forward-fit is the divergence-freeness, which is found to be Ld = (5 ± 6) × 10−6 (Table 2,
sixth column), and the force-freeness, which is found to be Lf = (84 ± 194) × 10−6 (Ta-
ble 2, seventh column), both being extremely accurate. The average computation time for
the NLFFF forward-fitting runs of potential field cases was found to be tCPU ≈ 61 s (on a
Mac OS X with 2 × 3.2 GHz Quad-Core Intel Xeon processor and 32 GB 800 MHz DDR2
FB-DIMM Memory).

We performed also some parametric studies to explore the accuracy of the forward-fitting
code as a function of some control parameters that are different from the standard settings
given in Table 1. We list the results in Table 3. If we increase the spatial resolution of the field
line extrapolation to �s/�x = 0.5, the accuracy of the field lines does not change, neither
in terms of the mean misalignment angle nor in the divergence-freeness figure of merit
(Table 3, second line). Increasing the number of magnetic components in the decomposition
of magnetograms does not improve the accuracy for the potential-field cases (e.g., by a
factor of two compared with the simulated numbers of Nmag = 1,2,4,10), but degrades
the divergence-freeness and force-freeness and increases the computation time by a factor
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Nonlinear Force-Free Magnetic Field 353

Figure 3 Test cases #1 – 6 are shown, consisting of a unipolar (#1: top left), a dipolar (#2: middle left), a
quadrupolar (#3: bottom left), and three decapolar cases (#4 – 6: panels on right side). The displays contain
the line-of-sight magnetograms (greyscale), the theoretically simulated loop field lines (red curves), and the
overlaid best-fit NLFFF field lines (blue curves). The starting point of the calculated field lines are indicated
with diamonds (at midpoint of loops, qloop = 0.5). Note the small amount of misalignment, ranging from
μ = 0.0◦ (#1) to μ = 6.6◦ (#5) (the values are given in Table 2).

of ≈4 (Table 3, third line). Starting the field line extrapolation at the footpoints (qloop =
0.0), rather than from the loop midpoints (qloop = 0.5), leads to no significant improvement
(Table 3, fourth line). Changing the weighting of coronal loop constraints (qv = 0) to using
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Table 2 Best-fit parameters of forward-fitting of the NLFFF model to potential field cases (with αj = 0),
using standard settings of the forward-fitting code (Table 1). The columns contain the case #= 1 – 6, the
number of magnetic charges Nmag, the number of loop field lines Nloop, the mean misalignment angle μ, the
mean best-fit force-free parameter α per loop, the divergence-freeness figure of merit Ld, the force-freeness
figure of merit Lf, and the computation time tCPU of the forward-fitting module 6. The last lines of the table
contain the means and standard deviations σ of the six cases.

# Nmag Nloop μ α Ld Lf tCPU

1 1 61 0.0◦ 0.00 0.000001 0.000001 2 s

2 2 91 2.7◦ 0.00 0.000002 0.000002 9 s

3 4 91 3.8◦ −0.03 0.000007 0.000008 23 s

4 10 107 3.0◦ −0.06 0.000001 0.000008 111 s

5 10 95 6.6◦ −0.08 0.000017 0.000480 117 s

6 10 98 4.2◦ −0.39 0.000003 0.000003 105 s

Mean 3.4◦ −0.09 0.000005 0.000084 61 s

±σ ±2.1◦ ±0.15 ±0.000006 ±0.000194 ±55 s

Table 3 Best-fit parameters of forward-fitting of the NLFFF model to potential field cases (with αj = 0),
using some non-standard settings in the spatial resolution �s/�x of calculated field lines, the number of
magnetic source components Nmag, the starting point of field line extrapolation qloop, the relative weighting
of loop and vector magnetograph data qv, but otherwise standard settings as listed in Table 1.

�s Nmag qloop qv μ α Ld [10−6] tCPU

×1.0 ×1 1.0 0.0 3.4◦ ± 2.1◦ −0.09 ± 0.15 5 ± 6 61 ± 55 s

×0.5 ×1 1.0 0.0 3.4◦ ± 2.1◦ −0.08 ± 0.14 5 ± 6 70 ± 66 s

×1.0 ×2 1.0 0.0 3.2◦ ± 1.7◦ 0.03 ± 0.13 10 ± 19 228 ± 233 s

×1.0 ×1 0.0 0.0 3.4◦ ± 2.1◦ −0.07 ± 0.16 5 ± 6 71 ± 66 s

×1.0 ×1 1.0 1.0 1.8◦ ± 2.3◦ −0.07 ± 0.10 3 ± 3 314 ± 290 s

only photospheric vector magnetograph data (qv = 1) improves the misalignment to μ =
1.8◦ ± 2.3◦, which represents an improvement in the accuracy by about a factor of two, but
requires about five times more computation time. Thus, the accuracy in fitting potential field
cases is fairly robust and does not depend the detailed setting of control parameters, except
for the weighting of photospheric versus coronal constraints.

4. Forward-Fitting to Quasi-NLFFF Models

Now we present the first tests of forward-fitting to non-potential fields (with αj �= 0), num-
bered as test cases #7 – 12. These six cases have the same line-of-sight magnetograms
Bz(x, y) or magnetic charges (Bj , xj , yj , zj ) as the potential-field cases #1 – 6, but have
a different twist or force-free parameter αj . We show the magnetograms and the theoret-
ical field lines of the models in Figure 4 (red curves), and the best-fit field lines of our
NLFFF forward-fitting code in Figure 4 (blue curves), using standard control parameter set-
tings (Table 1). The misalignment between these two sets of simulated and forward-fitted
field lines amounts to μ = 0.7◦ – 12.8◦, or μ = 5.1◦ ± 4.3◦ (Table 4, fourth column). These
test results are quite satisfactory, first of all since the difference between the theoretical and
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Figure 4 Test cases #7 – 12 are shown, consisting of a unipolar (#7: top left), a dipolar (#8: middle left), a
quadrupolar (#9: bottom left), and three decapolar cases (#10 – 12: panels on right side). The displays contain
the line-of-sight magnetograms (greyscale), the theoretically simulated loop field lines (red curves), and the
overlaid best-fit NLFFF field lines (blue curves). The starting points of the calculated field lines are indicated
with diamonds (at midpoint of loops, qloop = 0.5). The misalignment angles between the theoretical models
and the best fits are listed in Table 4. Note the huge difference of field line topologies compared with the
potential-field cases (shown in Figure 3), although the line-of-sight magnetograms are identical.
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Table 4 Best-fit parameters of forward-fitting of the NLFFF model to non-potential field cases (with αj �= 0),
using standard settings of the forward-fitting code (Table 1). The columns contain the cases #= 7 – 12, the
number of magnetic charges Nmag, the number of loop field lines Nloop, the mean misalignment angle μ,
the mean input force-free α parameter values, the divergence-freeness figure of merit Ld, the force-freeness
figure of merit Lf, and the computation time tCPU of the forward-fitting module 6.

# Nmag Nloop μ α Ld Lf tCPU

7 1 66 0.7◦ −20 0.000453 0.000299 2 s

8 2 85 2.2◦ −20 ± 1 0.000253 0.000104 8 s

9 4 82 3.6◦ −30 ± 12 0.000727 0.000691 21 s

10 10 89 12.8◦ 29 ± 40 0.001813 0.004672 118 s

11 10 89 4.5◦ 2 ± 102 0.000784 0.003123 179 s

12 10 99 7.1◦ 74 ± 62 0.000976 0.005334 271 s

Mean 5.1◦ 6 0.000834 0.002370 99 s

±σ ±4.3◦ ±40 ±0.000543 ±0.002319 ±109 s

best-fit field lines in Figure 4 are hardly recognizable by eye, and thus will suffice for all
practical purposes, and secondly, the misalignment is about an order of magnitude smaller
than found between traditional NLFFF codes and stereoscopically triangulated coronal loops
(μ ≈ 24◦ – 44◦; DeRosa et al., 2009). We see that the force-free parameters vary substan-
tially, in a range of α = 6 ± 40 (solar radius−1) (Table 4, fifth column), which translates into
a number Ntwist = αl/4π ≈ 0.5 of (full) twist turns over a typical loop length. The merit
of figure for the divergence-freeness is Ld = (0.8 ± 0.5) × 10−3 (Table 4, sixth column),
and the merit of figure for the force-freeness is Lf = (2.3 ± 2.3) × 10−3 (Table 4, seventh
column). The computation time is (tCPU ≈ 100 s), less than a factor of two longer than for
the potential-field cases (Table 2).

In order to achieve the most accurate performance of our code we explored also other
control parameter settings than the standard parameters given in Table 1. Instead of using the
hierarchical α-zone subdivision as shown in Figure 2 (Meth = A), we tested also other meth-
ods, such as subdivision by magnetically conjugate pairs of magnetic charges (Meth = B),
or subdivision by magnetically conjugate loop footpoints (Meth = C). In 90 % of the test
cases all three methods converged to the same minimum misalignment angle within ±0.1◦,
but for the 10 % of discrepant cases method A performed always best, so we conclude that
method A is the most robust one.

Increasing the resolution of calculating field lines to �s = 0.5�x does not improve the
misalignment (μ = 5.1◦ ± 4.3◦; Table 5, second case); Increasing the number of magnetic
sources by a factor of two does not improve the misalignment significantly either (Table 5;
third case). Starting the field line extrapolation at the footpoints (qloop = 0.0) rather than
from the loop midpoints, has no effect either (Table 5; fourth case). However, the change of
replacing the coronal (qv = 0) to photospheric constraints, using 3D vector magnetograph
data qv = 1 does improve the best fits substantially, but is more costly in computation time
(Table 5, fifth case). The reason for this improvement is probably that photospheric field
vectors are more uniformly distributed than coronal loops, but coronal constraints are more
important when the photospheric magnetic field is not force-free.

The agreement between the best forward-fitting solutions of the magnetic field compo-
nents (Bx,By,Bz) and the model are shown in Figure 5. Note that only the line-of-sight
magnetogram Bz(x, y, zph) was used as input to the forward-fitting code, for standard con-
trol parameter settings (qv = 0). For these tests, the code predicts the transverse component
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Table 5 Best-fit parameters of forward-fitting of the NLFFF model to potential field cases (with αj = 0),
using some non-standard settings in the spatial resolution �s/�x of calculated field lines, the number of
magnetic source components Nmag, the starting point of field line extrapolation qloop, the relative weighting
of loop and vector magnetograph data qv, but otherwise standard settings as listed in Table 1.

�s Nmag qloop qv μ Ld [10−3] Lf [10−3] tCPU

×1.0 ×1 1.0 0.0 5.1◦ ± 4.3◦ 0.8 ± 0.5 2.3 ± 2.3 99 ± 109 s

×0.5 ×1 1.0 0.0 5.1◦ ± 4.3◦ 0.8 ± 0.6 2.3 ± 2.3 100 ± 110 s

×1.0 ×2 1.0 0.0 4.5◦ ± 2.9◦ 0.7 ± 0.3 2.1 ± 2.1 303 ± 307 s

×1.0 ×1 0.0 0.0 5.1◦ ± 4.3◦ 0.8 ± 0.5 2.4 ± 2.3 100 ± 110 s

×1.0 ×1 1.0 1.0 3.4◦ ± 3.6◦ 0.7 ± 0.3 2.2 ± 2.1 459 ± 342 s

maps Bx(x, y) and By(x, y), which is quite satisfactory for this set of tests, as Figure 5
demonstrates. The mean ratios of the absolute magnetic field strengths are accurate within a
few percents (indicated in each panel of Figure 5).

The force-free parameter α is shown as a photospheric map |α(x, y, zph)| for the model
(Figure 6, top and third row) and for the forward-fitting solution (Figure 6, second and fourth
row). The comparison can be quantified by the ratio of the two values, which agrees within
a few percents. A sensible test is also to display a scatterplot of the best-fit α-values versus
the model α-values for each pixel of a photospheric map (Figure 7), or averaged along
each of the fitted coronal loops (Figure 8). The ratios of the two quantities ranges from
αfit/αloop = 0.99 ± 0.00 for the best case (#7, Figure 8 top left) to αfit/αloop = 0.88 ± 0.29
for the worst case (#12, Figure 6, bottom right). Our forward-fitting code retrieves the correct
sign of the α-parameter in all cases, and their absolute values agree within a few percents
with the theoretical model. Thus we conclude that the convergence behavior of our forward-
fitting code is quite satisfactory, because it retrieves the force-free α-parameters with high
accuracy, at least for the given parameterization.

5. Forward-Fitting to Low and Lou (1990) Model

The foregoing tests were necessary to verify how accurately the forward-fitting code can
retrieve the solution with many free parameters (from nfree = 5, . . . ,50), which represents a
numerical convergence test. Of course, because the same parameterization is used in sim-
ulating the input data as in the model that is forward-fitted to the simulated data, this rep-
resents the most favorable condition where the model parameterization is adequate for the
input data. Moreover, the simulated data were only force-free to second order, so we cannot
use the force-freeness figure of merit calculated from the solution as an absolute criterion
to evaluate how accurate the forward-fitting solution fulfills Maxwell’s equations. So, the
foregoing tests do not tell us whether the model parameterization of the forward-fitting code
is adequate for arbitrary data, and how physical the solution is.

We conduct now a test that generates the input data with a completely different parame-
terization than our model and fit a non-potential field case that is exactly force-free, which
is provided by analytical NLFFF solutions of the Low and Lou (1990) model, described
and used also in Malanushenko, Longcope, and McKenzie (2009). The particular solution
we are using is defined by the parameters (a = 0.6, n = 2.0), where a is a Grad–Shafranov
constant and n is the harmonic number of the Legendre polynomial.
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Figure 5 Contour maps of magnetic field component maps Bx(x, y) (left column), By(x, y) (middle col-
umn), and line-of-sight component Bz(x, y) at the photospheric level for cases #7 – 12 (rows), shown with
red contours (solid for positive and dashed for negative magnetic polarity). The best fits that result from the
decomposition of the line-of-sight component are shown with blue curves, and the mean ratio of the absolute
magnetic field strengths between the best fit and the model are indicated in each frame.
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Figure 6 Contour maps of the force-free parameter |α(x, y)| of the simulated models (top and third row)
and best-fit solutions (second and fourth row), for the six cases #7 – 12.

The line-of-sight magnetogram Bz(x, y) of the Low and Lou case consists of three
smooth patches with an elliptical geometry, where the central patch has a positive mag-
netic polarity, and the eastern and western patch a negative polarity (see greyscale image in
Figure 9 in left panel). The ideal number of decomposed features in the magnetogram is not
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Figure 7 Scatter plot of the best-fit force-free parameters αfit(x, y, zph) of every map pixel (x, y) versus the
corresponding value αsim(x, y, zph) of the simulated models for the six cases #7 – 12. The mean and standard
deviation of the ratio αfit/αsim is indicated in each panel.

known a priori, because a too small number leaves too large residuals of magnetic flux that
is not accounted for in the forward-fit, while a too large number leads to overlapping mag-
netic field components and force-free α-parameter zones, which may jeopardize the quality
of forward-fitting (which works best for spatially non-overlapping and independent zones).
We show three different trials with Nmag = 4,10,50 in Figure 9. The forward-fitted magne-
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Figure 8 Scatter plot of the best-fit force-free parameters αfit averaged from each fitted coronal loop versus
the corresponding value αsim of the simulated model loops for the six cases #7 – 12. The vertical error bars
indicate the standard deviation of the spatial variation of αfit(s) along each loop. The mean and standard
deviation of the ratio αfit/αsim is indicated in each panel.

tograms and the difference images with respect to the input magnetogram are also shown
in Figure 9. The residuals in the difference images have a mean and standard deviation of
(Bfit − Bmodel)/Bmax = 0.0022 ± 0.0243 for Nmag = 4; −0.0005 ± 0.0082 for Nmag = 10;
and −0.0016 ± 0.0043 for Nmag = 50, respectively. Thus, the forward-fitted magnetograms
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Figure 9 The decomposition of line-of-sight magnetogram Bz(x, y) (simulation in left middle frame) of
the Low and Lou (1990) model is shown for three trials with different numbers of magnetic components
(Nmag = 4,10,50, first, second, and third row). The locations of the center positions of the magnetic com-
ponents is shown with crosses in the difference images (right-hand panels). Two profiles across the middle of
the magnetogram are also shown (solid curves).

agree with the Low and Lou (1990) model within �1 % of the magnetic flux. Note that
the parameters that decompose the line-of-sight magnetogram make up 80 % of the free pa-
rameters in our forward-fitting model, fully determine the potential field extrapolation, but
ignore the force-free α-parameters so far. The potential field solution for the Low and Lou
(1990) model is shown in Figure 10 (top panel), for a decomposition of Nmag = 50 magnetic
components, for a set of Nloop = 60 loops. The resulting mean misalignment between the
model and the potential field is μ = 21.9◦ (Table 6, first line), and μ = 30.8◦ for Nmag = 10,
respectively.

We forward-fitted several hundred runs to the Low and Lou (1990) model with different
parameter settings (Table 1) and list the results of a selection of four cases in Table 6, and
two cases thereof in Figure 10. For Nmag = 50 and a threshold of Thresh = 0 G we find a so-
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Figure 10 Potential field calculation (top) and forward-fitting of a nonpotential (quasi-NLFFF) model (mid-
dle and bottom) to different sets (Thresh = 0, 200 G) of Nloop ≈ 60 coronal loops, which represent an accu-
rate nonlinear force-free field solution of the Low and Lou (1990) model. The model loops are outlined in red
color, and the best-fit field lines in blue color. The average misalignment angle μ is indicated in each panel.
The photospheric magnetogram is rendered with a greyscale. A scatterplot of the best-fit αfit-parameters
averaged along each loop versus the model parameters αmodel are shown in the right-hand panels.
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Table 6 Best-fit results of forward-fitting to the Low and Lou (1990) model, using the following parameter
settings: the number of magnetic source components Nmag = 10,50, the threshold of the magnetic field
for selected loops Thresh = 0, 200 G, but otherwise standard settings as listed in Table 1. The results are
quantified by the number of fitted loops nloop, the mean misalignment angle μ (degrees), the ratio of the
fitted to the model input force-free parameter, αfit/αmodel, the divergence-freeness Ld, the force-freeness Lf,
and the computation time tCPU (s).

Nmag Thresh
[G]

nloop μ

[deg]
αfit/αmodel Ld Lf tCPU

[s]

50 0 60 21.9◦ 0.00 ± 0.02 0.000021 0.000023 0

10 0 60 12.7◦ 0.66 ± 0.43 0.000083 0.000751 257

50 0 60 6.6◦ 0.69 ± 0.31 0.000045 0.000082 1359

10 200 59 6.1◦ 0.63 ± 0.22 0.000121 0.000617 123

50 200 59 4.3◦ 0.68 ± 0.28 0.000084 0.000174 1338

lution that has only a misalignment of μ = 6.6◦ (Figure 10, middle panel, and Table 6, third
line). This case retrieves the force-free parameter α with an average ratio of αfit/αmodel =
0.69±0.31 (Figure 10, middle right panel) for the 60 loops shown. The divergence-freeness
and force-freeness amount to Ld = 4.5 × 10−5 and Lf = 8.2 × 10−5. If we select a set of
coronal loops with only strong magnetic field strengths at the footpoints (Thresh = 200 G),
the misalignment improves to μ = 4.3◦ (Figure 10, bottom left panel), while the accuracy
of the retrieved α-values remains about the same (αfit/αmodel = 0.68 ± 0.28 (Figure 10, bot-
tom right panel). It appears that our forward-fitting code always underestimates the values
in loops with the highest α-parameter, which was not the case in all of our previous simula-
tions (Figure 8). It appears that the elliptical shape of magnetic patches could be responsible
for this underestimate, while it did not occur for spherical shapes of magnetic patches (Sim-
ulation runs #7 – 12) described in Section 4. Nevertheless, the achieved small amount of
misalignment down to μ = 4.3◦ yields a good approximation to a nonlinear force-free field
that is sufficiently accurate for most practical purposes of coronal field modeling and can
be obtained in a relatively short computation time. The computation times for the five runs
listed in Table 6 amounted to tCPU ≈ 2 – 20 min. We obtained even higher accuracies down
to misalignments of μ � 1◦ for smaller subgroups of coronal loops that were localized in
partial domains of the active region.

6. Discussion and Conclusions

In this study we developed a numeric code that accomplishes (second-order) nonlinear force-
free field fast forward-fitting of combined photospheric magnetogram and coronal loop data.
The goal of this code is to compute a realistic magnetic field of a solar active region. Pre-
viously developed magnetic field extrapolation codes used either photospheric data only,
such as potential-field source surface (PFSS) codes (e.g., Altschuler and Newkirk, 1969)
and nonlinear force-free field (NLFFF) codes (e.g., Yang, Sturrock, and Antiochos, 1986;
Wheatland, Sturrock, and Roumeliotis, 2000; Wheatland, 2006; Wiegelmann, 2004; Schrij-
ver et al., 2006, 2008; Amari, Boulmezaoud, and Aly, 2006; Valori, Kliem, and Fuhrmann,
2007; Metcalf et al., 2008; DeRosa et al., 2009; Malanushenko, Longcope, and McKen-
zie, 2009), or (stereoscopically triangulated) coronal loop data only (Sandman et al., 2009;
Sandman and Aschwanden, 2011). There are only very few attempts where both photo-
spheric and coronal data constraints were used together to obtain a magnetic field solution,
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using either a potential field model with unipolar buried charges that could be forward-
fitted to the observed loops (Aschwanden and Sandman, 2010), a linear force-free field
(Feng et al., 2007a, 2007b), or a NLFFF code (Malanushenko, Longcope, and McKenzie,
2009, 2011). For special geometries, potential field stretching methods (Gary and Alexan-
der, 1999) or a minimum dissipative rate method for non-force-free fields have also been
explored (Gary, 2009).

The new approach of including coronal magnetic field data, in form of stereoscopically
triangulated loop 3D coordinates, requires a true forward-fitting approach, while the tradi-
tional use of photospheric magnetogram (or vector magnetograph) data represents an extrap-
olation method from given boundary constraints. Both methods require numerous iterations,
and thus are computing-intensive, but the classical forward-fitting method requires a suitable
parameterization of a magnetic field model, while extrapolation methods put no constraints
on the functional form of the solutions (such as the 3D geometry of magnetic field lines).
Thus, the new approach developed here makes use of a parameterization of the 3D magnetic
field model in terms of analytical functions that can be fitted relatively fast to the given coro-
nal constraints, but may lack the absolute generality of nonlinear force-free field solutions
that NLFFF codes are providing. However, our analytical NLFFF model, which is accurate
to second-order (Paper I), probably represents one of the most general parameterizations
that is possible with a minimum of free parameters, adapted to uniformly twisted field lines.
The parameter space given by this model represents a particular class of quasi-force-free
solutions, which is supposed to be most suitable for a superposition of twisted field line
structures, but only fitting to real data can reveal how useful and suitable our model is for
applications to solar data.

In this study we described the numeric code, which is based on the analytical second-
order solutions derived in Paper I, and performed test with 12 simulated cases (six potential
and six non-potential), as well as with an analytical NLFFF solution of the Low and Lou
(1990) model. The forward-fitting to the 12 simulated cases demonstrated

i) the satisfactory convergence behavior of the forward-fitting code (with mean mis-
alignment angles of μ = 3.4◦ ± 2.1◦ for potential field cases (see Table 2), and μ =
5.1◦ ± 4.3◦ for non-potential field cases (see Table 4),

ii) the relatively fast computation speed (from �1 s to �10 min), and
iii) the high fidelity of retrieved force-free α-parameters (αfit/αmodel ≈ 0.9 – 1.0; see Fig-

ure 8).

The additional test of forward-fitting to the analytical solution of Low and Lou (1990)
data yielded similar results, i.e., satisfactory convergence behavior (with mean misalignment
angles of μ = 4.3◦ – 6.6◦ for two subsets of loops, see Figure 10),

ii) relatively fast computation speed (tCPU ≈ 2 – 20 min), and
iii) the fidelity of retrieved force-free α-parameters (αfit/αmodel ≈ 0.7 ± 0.3; see Figure 10).

The only significant difference of the second test is the trend of underestimating the
α-parameter for those loops with the highest α-values, by a factor of �0.5. However, if
the loops with the highest α-values are fitted individually, the code retrieves the correct α-
value. It is not clear whether this feature of the code is related to the geometrical shape
of the magnetic concentrations in the magnetogram, which is spherical in our simulation
and forward-fitting model, but elliptical in the Low and Lou (1990) case. We simulated
the elliptical magnetic sources of the Low and Lou (1990) model by a superposition of
spherical sources and found that the code retrieves the correct α-values for each loop (within
a few percent accuracy). It is possible that the geometric shape of the Low and Lou (1990)
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model, which represents a special class of nonlinear force-free solutions anyway (in terms of
Legendre polynomials) cannot efficiently be parameterized with a small number of spherical
components, which is the intrinsic parameterization of our code. Anyway, since the Low and
Lou (1990) model represents also a very special subclass of nonlinear force-free solutions
that may or may not be adequate to model real solar active regions, it may not matter much
for the performance of our code with real solar data.

After having tested our numeric code we can proceed to apply it to solar data, such as
active regions observed with STEREO since 2007, for which stereoscopic triangulation of
coronal loops is available (Feng et al., 2007a, 2007b; Aschwanden and Sandman, 2010; As-
chwanden et al., 2012a, 2012b). The second-order NLFFF approximations of our code may
be used as an initial guess for other more accurate NLFFF codes, resulting into a signifi-
cantly shorter computation time. Other future developments may involve the reduction of
coronal constraints from 3D to 2D coordinates, which can be furnished by automatic loop
tracing codes (e.g., Aschwanden et al., 2008; Aschwanden, 2010; and references therein)
and does not require the availability of STEREO data. However, non-STEREO data pro-
vide less rigorous constraints for coronal loop modeling, and thus increase the ambiguity of
force-free field solutions. Nevertheless, more realistic coronal magnetic field models seem
now in the grasp of our computation methods, which has countless benefits for many re-
search problems in solar physics.
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