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Abstract We derive an analytical approximation of nonlinear force-free magnetic field so-
Iutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data,
constrained either by observed line-of-sight magnetograms and stereoscopically triangu-
lated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions pro-
vide the magnetic field components B, (x), B, (X), B.(x), the force-free parameter o(x), the
electric current density j(x), and are accurate to second-order (of the nonlinear force-free
a-parameter). The explicit expressions of a force-free field can easily be applied to model-
ing or forward-fitting of many coronal phenomena.

Keywords Sun: corona - Sun: magnetic fields

1. Introduction

The coronal magnetic field can be constrained in a number of ways, such as by extrapo-
lation of photospheric magnetograms or vector-magnetograph data, by radio observations
of gyroresonance layers above sunspots, of by coronal seismology of oscillating loops. Be-
fore the advent of the STEREO mission, attempts were made to model observed coronal
loops with stretched potential field solutions (Gary and Alexander, 1999), to fit a linear
force-free model with solar-rotation stereoscopy (Wiegelmann and Neukirch, 2002; Feng
et al., 2007), by tomographic reconstruction with magnetohydrostatic constraints (Wiegel-
mann and Inhester, 2003; Ruan et al., 2008), by magnetic modeling applied to spectropo-
larimetric loop detections (Wiegelmann et al., 2005), or by magnetic field supported stereo-
scopic loop triangulation (Wiegelmann and Inhester, 2006; Conlon and Gallagher, 2010).
Recently, stereoscopic triangulation of coronal loops with the STEREO mission became
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available, which constrains the 3D geometry of coronal magnetic field lines (Aschwanden
et al., 2008; Aschwanden, 2009). The plethora of coronal high-resolution data allows us
now to compare different magnetic models and to test whether they are self-consistent.
A critical assessment of nonlinear force-free field (NLFFF) codes revealed the disturbing
fact that different NLFFF codes yield incompatible results among themselves, and exhibit
significant misalignments with stereoscopically triangulated loops (DeRosa et al., 2009;
Sandman et al., 2009; Aschwanden and Sandman, 2010; Sandman and Aschwanden, 2011;
Aschwanden et al. 2012a, 2012b). The discrepancy was attributed to uncertainties in the
boundary conditions as well as to the non-force-freeness of the photosphere and lower chro-
mosphere. Earlier tests with the virial theorem already indicated that the magnetic fields
in the lower chromosphere at altitudes of & < 400 km are not force-free (Metcalf et al.,
1995). Constraints by coronal tracers thus have become an important criterion to bootstrap a
self-consistent magnetic field solution. The misalignment between theoretical extrapolation
models and stereoscopically triangulated loops could be minimized by using potential field
models with forward-fitted unipolar magnetic charges (Aschwanden and Sandman, 2010) or
dipoles (Sandman and Aschwanden, 2011).

In this Paper we go a step further by deriving a simple analytical approximation of non-
linear force-free field solutions that is suitable for fast forward-fitting to stereoscopically
triangulated loops or to some other coronal observations. While accurate solutions of force-
free magnetic fields have been known for special mathematical functions (Low and Lou,
1990) that have been used to reconstruct the local twist of coronal loops (Malanushenko,
Longcope, and McKenzie, 2009; Malanushenko, Yusuf, and Longcope, 2011), they are not
suitable for forward-fitting to entire active regions. In contrast, our theoretical framework
entails the representation of a potential or non-potential field by a superposition of a finite
number of elementary field components that are associated with buried unipolar magnetic
charges at arbitrary locations, each one being divergence-free and force-free to a good ap-
proximation, as we test numerically. While this Paper contains the analytical framework of
the magnetic field model, the numerical forward-fitting code with applications to observa-
tions will be presented in a Paper II (Aschwanden and Malanushenko, 2012), and applica-
tions to stereoscopically observed active regions in Aschwanden et al. (2012a, 2012b).

2. Theory
2.1. Potential Field Parameterization

The simplest representation of a magnetic potential field that fulfills Maxwell’s divergence-
free condition (V - B = 0) is a unipolar magnetic charge j that is buried below the solar
surface, which predicts a magnetic field B;(x) that points away from the buried unipolar
charge and whose field strength falls off with the square of the distance r;,

d j 2 r;

B,x)=8B;| =) —, (1)
ry/J Tj

where B; is the magnetic field strength at the solar surface above a buried magnetic charge,

(xj,yj,z;) is the subphotospheric position of the buried charge, d; is the depth of the mag-

netic charge,
dj=1- Jx2+y + 2, 2)
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andr; =[x — x;,y — ¥,z — z;] is the vector between an arbitrary location x = (x, y, z) in
the solar corona (were we desire to calculate the magnetic field) and the location (x;, y;, z;)
of the buried charge. We choose a Cartesian coordinate system (x, y, z) with the origin in
the Sun center and are using units of solar radii, with the direction of z chosen along the
line-of-sight from Earth to Sun center. For a location near disk center (x < 1, y <« 1), the
magnetic charge depth is d; ~ (1 — z;). Thus, the distance r; from the magnetic charge is

=@ =) 5 =3 -2 3

The absolute value of the magnetic field B (r;) is simply a function of the radial distance r;
(with B; and d; being constants for a given magnetic charge),

di\*
B(r)) :Bj(—’> . 4)
rj

In order to obtain the Cartesian coordinates (By, By, B;) of the magnetic field vector
B;(x), we can rewrite Equation (1) as

B.(x,y,2) = Bj(d;/r))*(x = x;)/r;,
By(x,y.2) = B;(d;/r))*(y = y))/7), ®)

B.(x,y,2) = B;(d;/r))*(z—z;)/r;.
We progress now from a single magnetic charge to an arbitrary number N,, of magnetic
charges and represent the general magnetic field with a superposition of Ny, buried magnetic

charges, so that the potential field can be represented by the superposition of Ny, fields B;
from each magnetic charge j =1, ..., Ny,

Nm Nm d ZI"
B(x):ZB,(x):ZB,(r—{) r—f (©6)
j=1 j=1 J J

As an example we show the representation of a dipole with two magnetic unipolar
charges (N, = 2) of opposite polarity (B, = — B;) in Figure 1. Each of the unipolar charges
has a radial magnetic field (dotted lines), but the superposition of the two vectors of both
unipolar charges in every point of space, B(x) = B;(x) + B,(x), reproduces the familiar
dipole field. For the case shown in Figure 1 we used the parameterization of two subphoto-
spheric unipolar magnetic charges at positions x; = —0.5 and x, = 40.5, which produces
dipole-like field lines (solid curves), while they converge to the classical solution of a dipole
field in the limit of x; — 0 and x, > 0, as can be shown analytically (Jackson, 1962).

2.2. Force-Free Field Solution of a Uniformly Twisted Fluxtube

A common geometrical concept is to characterize coronal loops with cylindrical fluxtubes.
For thin fluxtubes, the curvature of coronal loops and the related forces can be neglected,
so that a cylindrical geometry can be applied. Because the footpoints of coronal loops are
anchored in the photosphere, where a random velocity field creates vortical motion on the
coronal fluxtubes, they are generally twisted. We consider now such twisted fluxtubes in a
cylindrical geometry and derive a relation between the helical twist and the force-free pa-
rameter «. The analytical solution of a uniformly twisted flux tube is described in several
textbooks (e.g. Gold and Hoyle, 1960; Priest, 1982; Sturrock, 1994; Boyd and Sanderson,
2003; Aschwanden, 2004), but we summarize the derivation here to provide physical in-
sights for the generalized derivation of nonlinear force-free magnetic field solutions derived
in Section 2.3 in a self-consistent notation.
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Figure 1 The magnetic field of a symmetric dipole (dashed lines) is shown, together with the field resulting
from the superposition of two unipolar magnetic charges (solid lines). The two field models become identical
once the two unipolar charges are moved towards the location of the dipole moment at position (x, y) = (0, 0).
The radial field of each unipolar (positive and negative) charge is also shown for comparison (dotted lines).

Figure 2 The basic 3D Niis=1/2
geometry of a cylindrical flux
tube with uniform twist is defined (?
by the length [ of the cylinder i

axis, the number of twisting turns
along this length, Nyyigt, Or by
the misalignment angle u at the
flux tube radius p between the

potential field line BP (aligned el
with the cylindrical axis) and the W NP
non-potential field line BNP B j B |

(aligned with the twisted loop).
The non-potential field line BNP
can be decomposed into a
longitudinal field component By
and an azimuthal field
component By,.

%
=

We consider a straight cylinder where a uniform twist is applied, so that an initially
straight field line B = (0, 0, By), aligned with a field line coordinate s, is rotated by a number
Niwist of full turns over the cylinder length /, yielding an azimuthal field component B, at
radius p,

B, pde  27pNwis

By _ PN wist _p 7
B; as l p ™
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with the constant b defined in terms of the number of full twisting turns N;s over a (loop)
length [.

The cylindrical geometry of a twisted flux tube is visualized in Figure 2. The longitudinal
component of the untwisted magnetic field corresponds to a potential field vector BY, while
the twisted non-potential field line BN? has a helical geometry with an angle . at a radius p,
which can be described by the longitudinal component By and the azimuthal component B,.
The fluxtube can be considered as a sequence of cylinders with radii p, each one twisted by
the same twist angle d¢/ds = 27 Nyyis/ /. For uniform twisting, the magnetic components
B, and B, depend only on the radius o, but not on the length coordinate s or azimuth
angle ¢. Thus, the functional dependence in cylindrical coordinates (o, ¢, §) is

B= [Bp, Bgoa Bs] = [0» Bw(p), Bs (10)] (8)
Consequently, the general expression of V x B in cylindrical coordinates,
10B; 0B, 0B B, 1/ 0 oB

VxB=|-— TR0 T S5 S (2 pp)— T2 ©
p 0@ ds  ds ap  p \dp ap

is simplified with B, =0 and the sole dependencies of B,(p) and B,(p) on the radius p
(Equation (7)), yielding a force-free current density j of

Lo = v xBy= o, 2B L(3 o (10)
J=UpsJos Js T Ax T Ax | 8,0’,0 ap Pl .

Requiring that the Lorentz force is zero for a force-free solution, F = j x B = 0, we obtain
a single non-zero component in the radial p-direction, since j, =0 and B, = 0 for the two
other components,
F=jxB=[Bj, — ByJs,0,0], (11)
yielding a single differential equation for By and B,,,
dBs 1 d
B,— + B,——(pB,) =0. (12)
dp = “pdp "
By substituting B, = bp B, from Equation (7) into Equation (12), this simplifies to
d
—[(1+°0%)B,] =0. 13
L0707 B] (13)

A solution is found by making the expression inside the derivative to a constant (By), which
yields B, and By,

(14)

By b B
B=[Bp,B¢,,BS]=[O 0P 0 ]

? l+b2,02’ 1+b2p2
[This equation also corrects a misprint in Equation (5.5.8) of Aschwanden (2004), where

a superfluous zero component has to be eliminated.] With the definition of the force-free
o -parameter,

47
(Vv XB):sza(p)B, (15)

we can now verify that the a-parameter for a uniformly twisted fluxtube depends only on
the radius p,
2b

A+ (16)

a(p) =
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Untwisted flux tube Twisted flux tube Twisted radial field

S S r
B{(p) B{(p)
NNNNNNY ADA
Equi-pdtentiallsufface | Equi-pdtentiallsuffack | Equi-patential
Solar syirface Solgr syirface Solar surfa
p p ‘ X
y

Figure 3 The field line geometry is shown for an untwisted cylindrical flux tube (left), a twisted cylindrical
flux tube (middle), and for a twisted radial field (right), from the side view in the xz-plane (top) and from
the top view in the xy-plane (bottom). The top panels show the longitudinal magnetic field component B (p)
and the bottom panels show the azimuthal magnetic field component By (o, ¢).

with the constant b defined in terms of the number of full twisting turns Ns over a (loop)
length [ (see Equation (7)),

_ 27'[1\,twist

The geometry of a twisted flux tube is visualized in Figure 3 (top middle), where the
parallel field lines are aligned with the coordinate axis s in the vertical direction, the cross-
sectional radius p is defined in the direction perpendicular to s, and the twist angle ¢ is
indicated in the horizontal projection (Figure 3, bottom middle). According to Equations (8)
and (14), the variations of the longitudinal B,(p) and of the azimuthal component B, (p)
with radius p are

b a7

B
1+b2,02
B()bp
B,(p) = szpz (19)
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Figure 4 The dependence of the longitudinal (solid lines) and azimuthal magnetic field component (dashed
lines) as a function of the distance r// from the twist axis field is shown for three different amounts of twist
(Ntwist = 1.5, 1.0, 0.5 full turns per loop length 7).

These radial dependencies are shown in Figure 4 for different numbers of twist (Nyist =
0.5, 1.0, 1.5). In the limit of vanishing twist (N = 0 — b = 0), we have an untwisted
flux tube (Figure 3, left) with a constant longitudinal field B;(p) = By and a vanishing
azimuthal component B, (p) = 0. The dependence of the azimuthal field component B, (p)
and the longitudinal field component B;(p) as a function of the radius p from the twist
axis (Figure 4) shows that the longitudinal component falls off monotonically with radius p,
while the azimuthal component increases first for small distances p < I, but falls off at
larger distances. Thus, the twisting causes a smaller cross-section of a fluxtube compared
with the potential field situation, as widely known (e.g. Klimchuk, Antiochos, and Norton,
2000).

2.3. Nonlinear Force-Free Field Parameterization

We are now synthesizing the concept of point-like buried magnetic charges that we used
to parameterize a potential field (Section 2.1) with the uniformly twisted flux tube concept
that represents an exact solution of a nonlinear force-free field (Section 2.2). The geometric
difference between the two concepts is the spherical symmetry of a point charge versus
the parallel field configuration of an untwisted flux tube. However, we can synthesize the
two geometries by considering the parallel field as a far-field approximation of a radial
field. In an Euclidean parallel field, the equi-potential surface is a plane perpendicular to the
parallel field vector, while a radial field has spherical equi-potential surface. We can make
the transformation of a parallel field in cylindrical coordinates (s, p, ¢) into a radial field
with spherical coordinates (r, 8, ¢) by mapping (see Figure 3)

S,

p = rsin(@). (20)

This transformation from cylindrical to spherical coordinates preserves the orthogonality
of the longitudinal field component (B, + B,) to the equi-potential surface (s = const

@ Springer



330 M.J. Aschwanden

r = const) and conserves the magnetic flux ®(r) along a bundle of field lines with area
A(r) = p*(r),
®(r) = B(r)A(r) = B(r)p?(r) = B(r)r’sin® 6 = const, (21)

if the longitudinal component B(r) o< ¥~ (Equation (1)) decreases quadratically with dis-
tance from the magnetic charge. Thus, applying the transformation into spherical coordi-
nates (Equation (20)) and the magnetic flux conservation (Equation (21)) to the straight flux
tube solution (Equations (18) and (19)), we can already guess the approximate nonlinear
force-free solution in spherical coordinates,

1

B(r0)ocr?— 22

"0 (14 b2r2sin’0) 22
br sinf

B,(r.0) ocr2—— 0 23)

(14 b?r2sin?6)’

More rigorously, we can derive a nonlinear force-free field solution by writing the
divergence-free condition (V - B) = 0 and the force-free condition (V x B) = (47/¢c)j =
a(p)B (Equation (15)) of a magnetic field vector (B, By, B,) in spherical coordinates
(r, 0, ¢) (with the origin at the location of the magnetic charge and the spherical symme-
try axis aligned with the vertical direction to the local solar surface),

a 1 9 . 1 0B,
—(Bygsinf) + =

1
V-B)= r_23_r(r23’) t sing 90 rsind 9p 0. @4)
[V xB] = ;[i(&p sinf) — %] =aB,, (25)

rsiné [ 00 bl
[V xB]p = l[L% — i(rBw)] =aBy, (26)
r|sinf d¢  Or
[V xB], = l[i(ng) - BB’] =aB,. (27)
r|or a0

For a simple approximative nonlinear force-free solution we require axi-symmetry with no
azimuthal dependence (/3¢ = 0) and neglect components that contribute only to second
order (By o [brsinf]? ~ 0), in analogy to the uniformly twisted flux tubes on cylindrical
surfaces (Figure 2). This requirement simplifies Equations (24)—(27) to

1a, ,
r_za_r(r B,)%O, (28)
! 8(3 inf) =B (29)
—_— sinb) = o b,,
rsind 96~ ¢
19
- a(rBw) ~0, (30)
198,
= ~aB,. (31)

Eliminating  from Equations (29) and (31) and using the analog ansatz as for cylindrical
fluxtubes (Equation (7)),

B, = B,brsinf, (32)
we obtain a similar differential equation as in Equation (13),
a
ﬁ[B,(l +b%r*sin*0)] =0. (33)
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A solution of this differential equation is obtained by setting the expression inside the
bracket to the constant By(d”/r?), which fulfills the divergence-free condition (Equa-
tion (28)), and we obtain a solution for B, and B, (using Equation (32)), for o (using
Equation (29)),

d? 1
B,(r,0) = Bo<r—2>m, (34)
B,(r.0) = Bo<d—§> _ brsinG (35)
r2 ) (1 + b*r?sin®6)
By(r,0) ~ 0, (36)
«(r.0) ~ 2bcosf 37)

(14 b2r2sin?6)

This solution fulfills both the force-free condition (Equations (29)—(31)) and the divergence-
free condition (Equation (28)) to second-order accuracy (o [brsin6]?). We see that this
solution is identical with the simplified derivation of Equations (22) and (23). At locations
near the twist axis (8 — 0), the general solution (Equations (34)—(37)) converges to the
cylindrical flux tube geometry solution (Equations (18) and (19)). Furthermore, in the limit
of vanishing twist (b — 0) we retrieve the potential-field solution (Equation (4)), since the
force-free parameter becomes « — 0, the azimuthal field component becomes B, = 0, and
the radial component reproduces the potential-field solution B, > By(d?/r?).

2.4. Cartesian Coordinate Transformation

In the derivation in the last section we derived the solution in terms of spherical coordinates
(r, 0, @) in a coordinate system where the rotational symmetry axis is aligned with the ver-
tical to the solar surface intersecting a magnetic charge j. Since we are going to model a
number of magnetic charges at arbitrary positions on the solar disk, we have to transform
an individual coordinate system (r;, 0;, ¢;) associated with magnetic charge j into a Carte-
sian coordinate system (x, y, z) that is given by the observers line-of-sight (in z-direction)
and the observer’s image coordinate system (x, y) in the plane-of-sky. The variables of the
Cartesian coordinate transformation are shown in Figure 5.

The radial magnetic field vector B, (which is pointing radially away from a magnetic
charge j located in the solar interior at (x;, y;, z;) is simply given by the difference of the
Cartesian coordinates from an arbitrary location (x, y, z),

B, [x—xj y—y z-z
B, . ;

= = [c0s,,x, €OS;,y, COS; ], (38)
rj rj rj

where B, is the absolute value of the radial magnetic field component B, (v}, 6;) (Equa-
tion (34)), r; is the spatial length of the radial vector r; (Equation (3)), defining the direc-
tional cosines cos,; (for the 3D coordinates i = x, y, z) of the radial magnetic field vec-
tor B,.

The azimuthal component B, (with the absolute value B,(r;, ;) defined in Equa-
tion (35)) of the twisted magnetic field is orthogonal to the direction of the twist axis R
(aligned with the local vertical),

R=[xj,)’j72j]7 (39)
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Figure 5 The geometry of a twisted radial field of a magnetic charge j buried at a subphotospheric position
(xj,yj,zj) is shown. The central twist axis (dashed line) intersects an equi-potential surface at position
(x0, Y0, 20) and the longitudinal field vector B, at position (x, y, z) has a radial distance p from the twist
axis and an azimuth angle ¢. The azimuthal magnetic field component By, at location (x, y, z) is orthogonal
to the radial vector p and the longitudinal field component B,, as well as to the direction of the twist axis R.

and the radial magnetic field component B, (Figure 5), and thus can be computed from the
vector product of the two vectors B, and R,

B, R x B, [ ] (40)
— = ———— =[C0S,.,, COS,_y, COS, |,
B(/, |R x Br| (2% @,y Pz

which defines the directional cosines cos,; of the azimuthal component in the Cartesian
coordinate system. The vector product allows us also to extract the inclination angle 6;
between the radial magnetic field component B, and the local vertical direction R,

6, —sin—' [ RXBr) @1
J IR|[B, |

Finally, the total non-potential magnetic field vector B = (B, By, B;) is then the vector
sum of the radial B, and the azimuthal magnetic field component B,

By = B, (rj,0;)cos, . +B,(r;,0;)cos, «
B, = B,(r;,0;)cos,, +B,(r;, 0;) cos, , 42)
B, = B,(rj,0;)cos, . +B,(r;,0;)cos, .,

with the directional cosines (cos,,;, cos, ;, cosy ;) defined by Equations (38) and (40). This is
a convenient parameterization that allows us directly to calculate the magnetic field vector
of the non-potential field B; = (B,, By, B;) associated with a magnetic charge j that is
characterized with five parameters: (B;, x;, y;, zj, «;), where we define the force-free a-
parameter from the twist parameter b; = 27 Nyyis/! (Equation (7)) at the location of the
twist axis (8; =0),

according to Equation (37).
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2.5. Superposition of Twisted Field Components

The total non-potential magnetic field from all j =1, ..., N, magnetic charges can be ap-
proximately obtained from the vector sum of all components j (in an analog way as we
applied in Equation (6) for the potential field),

Nm
B(x)=) B;(x). (44)

j=1

where the vector components B; = (B, ;, By ;, B; ;) of the non-potential field of a magnetic
charge j are defined in Equation (42), which can be parameterized with 5Ny, free parameters
(Bj,xj,yj,zj,a;) for anon-potential field, or with 4N, free parameters for a potential field
(with or; = 0). Of course, the sum of force-free magnetic field vectors is generally not force-
free, but we will prove in the following (Equations (46) and (47)) that the sum of NLFFF
solutions of the form of Equations (34) —(37), which are force-free to second-order accuracy
in o (or, more strictly, in [br sin6]), have the property that their sum is also force-free to
second-order in «.

Let us first consider the condition of divergence-freeness. Since the divergence operator
is linear, the superposition of a number of divergence-free fields is divergence-free also,

V.Bzv.(ZBj):Z(V-Bj)zo. (45)
j j

While the divergence-free condition is exactly fulfilled for a potential field solution (Equa-
tion (4)), our quasi-force-free approximation (Equations (34)—(37)) matches this require-
ment to second order in «, as the insertion of the solutions (Equations (34)—(37)) into the
divergence expression (Equation (24)) shows. For a quantitative measure of this level of
accuracy we can also check numerical tests of the figure of merit (Section 3.3).

Now, let us consider the condition of force-freeness. A force-free field has to satisfy
Maxwell’s equation (Equation (15)). Since we parameterized both the potential field and the
non-potential field with a linear sum of N,, magnetic charges, the requirement would be,

Nm Nm Nm
VxB=Vx) B;=> (V;xB))=) a;(r)B; =a(r)B. (46)
j=1 j=1 j=1

Generally, these three equations of the vector V x B cannot be fulfilled with a scalar function
a(r) for a sum of force-free field components, unless the magnetic field volume consists of
spatially separated force-free subvolumes. However, we can show the validity of the force-
freeness equation (Equation (46)) to second-order accuracy in «. Note that the nonlinear
force-free parameter « is proportional to b (Equations (37) and (43)), which is defined in
Equation (17), and thus we set second-order accuracy in b equal to second-order accuracy
in «. The argument goes as follows. If we use spherical coordinates, the NLFFF solution
of the radial component is of zeroth order, B, (r, 8) o O (a”) (Equation (34)), the azimuthal
component is of first order, B, (r, 0) o< O (') (Equation (35)), and the neglected third com-
ponent magnetic field component is of second-order, By (r, 8) o< O («?) (as can be shown by
inserting B, and B, into Equation (26)). The curl of the magnetic field (Equations (25) -
(27)) is then of first order for the radial component, [V x B], o aB, « O(a') (Equa-
tion (25)), to second order for the azimuthal component, [V x B], & («¢B,) O (a?) (Equa-
tion (27)), and the remaining third component is of third-order, [V x B]y o< (aBy) o O ()
(Equation (26)).

@ Springer



334 M.J. Aschwanden

Therefore, if we neglect second-order and higher-order terms, the divergence-free con-
dition (Equation (46)), which generally has three equations for the three curl components,
e.g. [V xB],, [V xB],, [V x B]g, reduces to one single equation for the radial component,
[V x B],, which can be fulfilled with a scalar function «(r),

[VxB], [VxX)" B

O{(I‘) ~ B, - ZNm B
VB S .
ZNm B Zj'v:l B;

Thus, we expect that the force-freeness is fulfilled to second-order accuracy O(a?) (or
strictly speaking O (b?)). We will demonstrate the near force-freeness of simulated examples
in the next section.

3. Simulations and Tests

We are now going to simulate examples of the analytical nonlinear force-free solutions in
order to visualize the magnetic topology and to quantify the accuracy of the divergence-free
and force-free conditions.

3.1. Numerical Examples

The simplest case is a single magnetic charge j = 1, which we illustrate as case A in
Figure 6 (top row). We choose the following parameters: a magnetic field strength of
B; = 1000 G (gauss) at the solar surface directly above the buried charge, the location
(x1, y1,21) = (0.1, 0.0, 0.95) for the buried charge, and a number of zero twist b; = 0 for the
potential field case. We show the simulated line-of-sight magnetogram B, (x, y) in Figure 1
(top left), which mimics an isolated sunspot. The pixel size of the magnetogram and the step-
ping size in the extrapolation along a field line is As = 0.004 solar radii (2800 km ~ 4", cor-
responding to the pixel size of SOHO/MDI magnetograms). We extrapolate the field lines for
every pixel that has a footpoint magnetic field strength above a threshold of 50 % (>500 G).
The field lines point in radial direction away from the center of the buried magnetic charge,
as is expected for the potential field of an isolated sunspot (and defined in Equation (1)).

The next basic example is a magnetic dipole, which can be represented in our model by
a superposition of a pair of two magnetic charges with opposite polarity, as sketched in Fig-
ure 1. The case B shown in Figure 6 is simulated with equal, but oppositely signed magnetic
field strengths (B; = 1000 G, B, = —1000 G) at mirrored positions (x; = 0.1, x, = —0.1),
otherwise we used the same parameters as in case A (y; =y, =0.0,r; =r, =0.95,b, =
by = 0.0). The magnetic field lines mimic the familiar structure of a dipole, which is param-
eterized here with eight free parameters (in the potential case).

A quadrupolar configuration is simulated in case C (Figure 6, bottom), with translational
symmetry (x; =0.1, x, =0.05, x3 = —0.05, x4 = —0.1; yy =0.1, ¥, =0.05, y3 =0.1, y, =
0.05), equal depths (r; =ry, =r3; =ry = 0.95), and alternating field strengths (B} = B3 =
1000, B, = B4 = —1000 G). The quadrupolar configuration shows essentially two bipoles,
each one with field lines that mostly connect within the same dipole domain, but a few
intermediate field lines actually connect from one to the other domain.

In Figure 7 we show the same three configurations as for the potential field model
(A, B, and C of Figure 6), but add electric currents caused by twisting, corresponding to
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Figure 6 Simulations of three line-of-sight magnetograms (left) and magnetic field lines projected into the
x—y plane (left) and into the vertical x—z plane (right). The three cases include: (A) a single positive magnetic
charge (first row), (B) a dipole produced by two magnetic charges with opposite polarity (second row), and
(C) a quadrupole configuration (third row). See parameters in Table 1. Only field lines with magnetic fields

above a 50 % threshold of the maximum field strength are shown.

Nuwist = —0.5 turns for the single charge (case D) or first dipole (case E), and Ny = 1.0
for the second dipole (case F), defined for a loop length of L = 0.1 solar radii. These
amounts of twist correspond to force-free o-parameters of o = 21 Nyyie/L = —10 and —20
solar radius~! (i.e., @ = —1.43 and —2.86 x 107! cm~!). Comparing the potential (Fig-
ure 6) and non-potential cases (Figure 7) shows clearly the differences that result from the
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Figure 7 Simulations of three line-of-sight magnetograms (left) and magnetic field lines of a non-potential
model with currents are shown, projected into the x—y plane (left) and into the vertical x—z plane (right).
The parameters of the three cases (D), (E), and (F) are identical to thous of (A), (B), and (C), except for the
addition of electric currents.

presence of electric currents. The force-free field lines of a sunspot become distorted into
spiral shapes (case D), the straight dipole becomes distorted into a sigmoid shape (case E),
and the quadrupolar configuration becomes also more distorted with sigmoid-like structures
(case F).

In Figure 8 we show a few more complicated cases (G, H, and I), consisting of N, =
10 magnetic charges, with random values chosen in the magnetic field range —1000 G <
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Figure 8 Simulations of three line-of-sight magnetograms (left) and magnetic field lines of a non-potential
model with currents are shown, projected into the x—y plane (left) and into the vertical x—z plane (right). The
three cases (G), (H), and (I) have each Ny, = 10 magnetic charges, with randomly chosen field strengths,
locations, and electric currents.

Bj < 41000 G, in positions —0.15 < x; < 0.15 solar radii, —0.15 < y; < 0.15 solar radii,
0.95 <r; <0.97 solar radii, and random twist in the range —3 < Nyisx < +3 per L =0.1x
solar radii. The field lines displayed in Figure 8 demonstrate that a rich variety of sigmoid-
shaped dipoles and inter-connecting multi-pole configurations can be generated with our
quasi-force-free solutions, which mimic realistic active regions observed in the solar corona.
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Figure 9 Maps of the magnetic field components By (x, y), By (x, y), B;(x, y) (left panels), the electric
current density j;(x, y), and the force-free a-parameter (right panels).

3.2. Force-Free a-Parameter and Electric Current Maps

In Figure 9 we show examples of various maps that can be generated to visualize a 3D vector
field solution, for the case F of a quadrupolar configuration with currents. We show the
following quantities in the image plane (x, y,z =1 + As), which corresponds to an image
plane near the solar surface: The three magnetic field vector component maps B, (x, y),
By(x,y), B.(x, y) (Figure 9, left panels, the vertical electric current map j.(x, y) (Figure 9,
top right panel), the nonlinear o-parameter «(x, y) (Figure 9, middle right panel), and the
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Table 1 Figures of merit for nine simulations of nonlinear force-free field solutions, detailing the size of
the 3D data cube, the number of magnetic charges (N, ), potential or non-potential model (P and NP), the
number of computed field lines Ny, the divergence-freeness L, the force-freeness Ly, and the computation
times fcpy-.

Case Data cube Magnetic Field lines ~ Divergence-  Force- Computation
charges N¢ freeness Lg freeness time fcpy
Nm Lg (s)

A 51 x 51 x 37 1(P) 87 0.0004 0.0007 0.078

B 51 x 51 x 37 2 (P) 160 0.0009 0.0014 0.309

C 51 x 51 x 37 4(P) 159 0.0015 0.0019 0.351

D 51 x 51 x 37 1 (NP) 87 0.0006 0.0009 0.083

E 51 x51x37 2 (NP) 160 0.0007 0.0010 0314

F 51 x51x37 4 (NP) 159 0.0015 0.0024 0.414

G 51 x51x37 10 (NP) 336 0.0012 0.0058 2.462

H 51 x51x37 10 (NP) 302 0.0010 0.0099 1.764

1 51 x 51 x37 10 (NP) 217 0.0018 0.0133 1.370

LOS magnetogram B, (x, y) together with extrapolated field lines (Figure 9, bottom right
panel). The B, map shows most clearly the locations of the four buried magnetic charges
that form two dipolar or a quadrupolar configuration. The magnetic polarization is also
reflected in the j, and a-map. The B, and the a-map show also the location of the neutral
line, where numerical effects due to the limited spatial resolution become visible.

3.3. Figures of Merit

The degree of convergence towards a divergence-free magnetic field model solution can be
quantified by a measure that compares the average divergence V - B, which should be close
to zero, with the gradient B/Ax of the magnetic field over a reference length scale Ax, for
instance a pixel of the computational grid. The average deviation can then be defined by (see
also Wheatland, Sturrock, and Roumeliotis (2000) or Schrijver et al. (2006))
1 [(V-B)]

V Jy |B/Ax|?

Similarly, the force-freeness can be quantified by the ratio of the Lorentz force, (j x B) =
(V x B) x B to the normalization constant B> /Ax,

1 [ 1(VxB)xBJ?
v.J)y 1B/ Ax

a= (48)

L¢= Vv, (49)
where B = |B|.

We calculated these figure of merit quantities for the nine cases simulated in
Figures 6—9. The values are listed in each of the panels in Figures 6 -8 and listed in Ta-
ble 1. The potential-field cases (A, B, and C) are found to have a figure of merit in the range
of Lyg =0.0009 £ 0.0006 for the divergence-freeness, and Ly = 0.0014 £ 0.0006 for the
force-freeness. The non-potential field cases (D, E, F, G, H, and I) have values in similar
ranges of Ly = 0.0009 % 0.0005 for the divergence-freeness, and Ly = 0.0100 £ 0.0080 for
the force-freeness. We find no tendency that this figure of merit depends on the number of
magnetic charges or some other model parameters. The fact that our quasi-force free ana-
lytical solutions perform equally well as standard NLFFF codes described in Schrijver et al.
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(2006) tells us that the inaccuracy of the analytical approximation is commensurable or even
smaller than the numerical uncertainty of other NLFFF codes. However, since our analytical
solution provides an explicit formulation of nonlinear force-free fields, it can be computed
much faster than the standard NLFFF codes, and still provides approximate solutions with
acceptable accuracy (to second order). The computation time of the analytical solutions for
the cases shown in Figures 6 —8 amounts to about 1 s (on a recent Mac computer: Mac OS
X, 2 x 3.2 GHz Quad-Core Intel Xeon, Memory 32 GB 800 MHz DDR2 FB-DIMM), while
standard iterative NLFFF codes need several hours to converge to a single NLFFF solution.

4. Discussion and Conclusions

The coronal magnetic field has generally been computed by extrapolation from lower bound-
ary data in form of photospheric magnetograms B_(x, y, z = zpn) Or vector-magnetograph
data B(x, y), using a numerical extrapolation algorithm that fulfills the conditions of force-
freeness (V - B) and divergence-freeness V x B = a(r)B, where «/(r) is a scalar function
in space r. These extrapolation algorithms are very computing-intensive, because a good
solution requires many iterations on a large computational 3D-grid that has sufficient spatial
resolution to resolve the relevant magnetic field gradients. The accuracy of these numerical
solutions depends very much on the noise in boundary vector magnetic field data as well as
on deviations of photospheric fields from a force-free state. Recent stereoscopic triangula-
tion of coronal loops has demonstrated a considerable mismatch between the extrapolated
fields and the actual coronal loops, which cannot easily be reconciled with extrapolation
algorithms, since they have only a very limited degree of freedom within the noise of the
boundary data. Moreover, since each NLFFF solution is very time-consuming to compute,
these algorithms are not suitable for forward-fitting.

The forward-fitting of magnetic field solutions to observed data requires a faster algo-
rithm to compute many NLFFF solutions for variable boundary data or for coronal con-
straints as given by stereoscopic 3D reconstructions. The fastest computational way would
be an explicit analytical solution for the coronal field vectors B(r) as a function of some
suitable parameterization of the boundary data or coronal constraints. There exist some
analytical solutions of nonlinear force-free fields, such as a class of solutions in terms of
Legendre polynomials (Low and Lou, 1990), which is characterized by some spatial sym-
metry and has been used to test numerical extrapolation algorithms (e.g. DeRosa et al., 2009;
Malanushenko, Longcope, and McKenzie, 2009). However, to our knowledge, the class of
analytical NLFFF solutions of Low and Lou (1990) has never been applied to forward-fitting
of observed data, such as line-of-sight magnetograms, vector magnetograph 3D data, or to
stereoscopically triangulated loops. Moreover, the special class of NLFFF solutions derived
in Low and Lou (1990) correspond to harmonics of Legendre polynomials, which have a
high degree of symmetry that does not match realistic observations of active regions, and
thus is not suitable for forward-fitting to real data.

What we need to model observed solar magnetic data with high accuracy is:

i) an explicit formulation of an analytical NLFFF solution;
ii) a parameterization of the NLFFF solution with a sufficient large number of free param-
eters that can be forward-fitted to data and converges close to observations; and
iii) a fast computation algorithm that can perform many interactions without computing-
intensive techniques.
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Hence, such a project consists of developing a suitable analytical formulation first, and
then to implement the analytical solutions into a forward-fitting code. In this paper we
have undertaken the first step. We started with a potential-field parameterization in terms
of N, buried magnetic charges, which is defined by 4N, free parameters that can easily
be extracted from an observed line-of-sight magnetogram B, (x, y) with arbitrary accuracy,
as demonstrated in two recent studies (Aschwanden and Sandman, 2010; Aschwanden et
al., 2012a). The key concept of this potential-field representation is that an arbitrary com-
plex 3D magnetic field can be decomposed into a finite number of elementary magnetic
field components, where each one simply consists of a quadratically decreasing radial field
of a buried magnetic charge. Divergence-freeness is conserved due to the linearity in the
superposition of elementary field components. In a next step we extended the elementary
potential-field component to a nonpotential-field component by adding a uniform twist that
can be parameterized by the force-free o-parameter. Such an elementary nonpotential field
component requires five free parameters, consisting of the four potential-field parameters
plus the force-free or-parameter. We derived an explicit analytical formulation of the radial
B, (7, 0) and azimuthal field vector B, (r, 0) that represents an approximative solution of the
divergence-free and force-free condition to second order (o< ). This solution is very accu-
rate for weakly non-potential fields and converges to the potential field solution for ¢ = 0. In
analogy to the potential-field representation, we represent a general non-potential field so-
Iution with a superposition of elementary non-potential field components and prove that the
divergence-freeness and force-freeness is conserved to second-order accuracy in our NLFFF
approximation.

We calculated some examples of potential and non-potential fields that mimic an isolated
sunspot, a dipolar and a quadrupolar configuration, as well as more complex multi-polar
configurations. The examples show that the magnetic field of arbitrary complex active re-
gions can be represented with our parameterization. Increasing the force-free o-parameter
distorts circular field lines into helical and sigmoid-shaped geometries. Our parameteriza-
tion allows one to compute either field lines (starting from arbitrary locations), 3D data
cubes of magnetic field vectors, of maps of the force-free «-parameter and electric cur-
rent j, (Figure 9). We tested the figures of merit for divergence-freeness and force-freeness,
which amount to Ly < 1073 and L; < 1072, The examples demonstrate also the computing
speed of this algorithm, which amounts to the order of ~ 1 s for a computation grid that
encompasses a typical active region with the spatial resolution of MDI. Thus, we envision
that a full-fletched forward-fitting code can converge within a few seconds to a few minutes,
depending on the number of iterations and number of magnetic field components.

Where do we go from here? The next step is the development of a forward-fitting code
that uses the magnetic field parameterization described here (see Paper II). We envision
the applications to at least three different sets of constraints, requiring three different ver-
sions of forward-fitting codes: i) line-of-sight magnetograms B, (x, y) and 3D coordinates
[x(s), y(s), z(s)] of stereoscopically triangulated loops; ii) line-of-sight magnetograms
B.(x,y) and 2D coordinates [(x(s), y(s)] of traced loops; and iii) vector-magnetograph
data [B.(x,y), By(x,y), B.(x, y)]. The first application requires STEREO data, while the
second one can be obtained from any EUV imager (e.g. AIA/SDO, TRACE, EIT/SOHO).
The third application can be conducted with the new HMI/SDO data and is equivalent to
other NLFFF extrapolation codes without coronal constraints, while the first two use coro-
nal tracers and alleviate the force-free assumption of photospheric data. We envision that
these three applications will reveal insights into a number of crucial questions in a novel
way.

There is a large number of physical problems and issues that can be addressed with the
anticipated forward-fitting code, such as:
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i) the force-freeness of the photosphere;
ii) the accuracy of NLFFF solutions;
iii) the spatial distribution of electric currents in active regions;
iv) the temporal evolution of currents before and during flares;
v) the spatial distribution of current dissipation and coronal heating;
vi) helicity injection;
vii) the 3D geometry of coronal loops which is needed for hydrodynamic modeling;
viii) scaling laws of the volumetric heating function with other physical parameters;
ix) tests of the magnetic field strength inferred from coronal seismology, efc.

There hardly exists a phenomenon in the solar corona that can be modeled without the
knowledge of the coronal magnetic field.
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ported by NASA contract NNG 04EAQ0C of the SDO/AIA instrument and the NASA STEREO mission
under NRL contract N00173-02-C-2035.

Appendix A: The Gold-Hoyle Flux Rope

A simple geometry of a force-free field structure is the Gold—Hoyle flux rope (Gold and
Hoyle, 1960), which consists of a curved axis with helical field lines curved around the axis
(Figure 10). While the stretched version of a flux rope with a straight twist axis has the exact
force-free solution of a uniformly twisted flux tube (Section 2.2), the curved version of the
Gold-Hoyle flux rope is subject to curvature forces due to the gradient of the magnetic field
across the flux rope diameter and has a modified force-free solution.

In order to explore the limitations of our force-free field parameterization we attempt here
to model such a Gold—Hoyle flux rope. We use the coordinates (xo, 0, z9) and (—xo, 0, zo)
with xo = 0.1 and zo = 0.985 solar radii (marked with diamonds in Figure 11) and ex-
trapolate field lines B(s) with our method, starting from the apex position (0, 0, z,) with
z, = 1.1, for a set of six cases with various force-free parameters «; = o, where the «’s
associated with the twist axis of each buried charge are defined by o = 277 Nyyis /L, with the
loop length L = 2w x¢ = 0.314 and the number of twist turns Nyt =0, 1, ..., 5 (indicated
with N =0,...,5 in Figure 11). The case N = 0 corresponds to the potential field case,
yielding a coplanar elliptical loop shape. The case N =1 represents a slightly twisted field
line that has a sigmoid shape and is a quasi-force-free solution. The cases with N =2, ..., 5
are strongly twisted field lines and may be less force-free, since the neglected o> terms could
be significant.

Figure 10 Cartoon of
Gold-Hoyle flux rope.
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Figure 11 Dipolar field lines with various numbers of twisting turns: N = 0 (potential field line), stable
sigmoid (N = 1; solid line), and unstable sigmoids (N = 2,...,5; dashed lines), according to our parame-
terization of point charges with twisted vertical axes. Note that the limit of large twist numbers does not turn
into a Gold—-Hoyle flux rope (Figure 10) with our parameterization.

Obviously we cannot reproduce the exact shape of the Gold—Hoyle flux rope as shown
in Figure 10 (with about seven twist turns) with our choice of parameterization. The rea-
son lies in the geometric constraints of the twist axis, which is semi-circular in the case of
the Gold—Hoyle model, but consists of vertical twist axes in our parameterization. So, this
counter-example clearly demonstrates the limitations of our parameterization. Nevertheless,
although the cartoon with the Gold—Hoyle geometry is very popular, especially for inter-
planetary flux ropes and CMEs, it is not clear whether such Gold—Hoyle type geometries
are found in loops in the lower corona, and whether the Gold—Hoyle geometry corresponds
to an exact force-free solution. It is conceivable that the Sun exerts rotational stress mostly
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in the photosphere (i.e. rotating sunspots), which propagates in vertical direction along the
field lines, but does not necessarily lead to a uniformly twisted circular flux tube as shown
in Figure 10, because the magnetic field drops rapidly with »~2 with height (for magnetic
charges with small sub-photospheric depths), and thus the magnetic stress is not uniformly
distributed along a semi-circular potential field line as envisioned in the Gold—Hoyle sce-
nario. However, for a case with a near-constant magnetic field strength B(s) along a potential
field line, we would expect a uniform twist as outlined in the Gold—Hoyle case.

On the other side, strongly twisted flux tubes with a twist larger than about 1.25 full turns
are unstable due to the kink instability and may erupt, which is another reason why multiply
twisted flux tubes are unlikely to be found in active regions. Even Gold and Hoyle (1960)
found a critical twist number of ®uig S 2.497 (Nywist = Puwist/27 S 1.25) above which
no equilibrium exists, which is also confirmed by recent MHD simulations (e.g. Torok and
Kliem, 2003). Thus, the Gold and Hoyle flux rope case may not be relevant for modeling
magnetic fields in stable active regions. Nevertheless, more general parameterizations could
be anticipated in future work, such as twist axes that follow potential field lines, rather than
vertical axes, as used in our parameterization to minimize the number of free parameters.
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