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ABSTRACT

We derive simple analytical approximations (in explicit form) for the hydrodynamic evolution of the electron
temperature T(s, t) and electron density n(s, t), for one-dimensional coronal loops that are subject to impulsive
heating with subsequent cooling. Our analytical approximations are derived from first principles, using (1) the
hydrodynamic energy balance equation, (2) the loop scaling laws of Rosner–Tucker–Vaiana and Serio, (3) the
Neupert effect, and (4) the Jakimiec relationship. We compare our analytical approximations with 56 numerical
cases of time-dependent hydrodynamic simulations from a parametric study of Tsiklauri et al., covering a large
parameter space of heating rates, heating timescales, heating scale heights, loop lengths, for both footpoint and apex
heating, mostly applicable to flare conditions. The average deviations from the average temperature and density
values are typically ≈20% for our analytical expressions. The analytical approximations in explicit form provide
an efficient tool to mimic time-dependent hydrodynamic simulations, to model observed soft X-rays and extreme-
ultraviolet light curves of heated and cooling loops in the solar corona and in flares by forward fitting, to model
microflares, to infer the coronal heating function from light curves of multi-wavelength observations, and to provide
physical models of differential emission measure distributions for solar and stellar flares, coronae, and irradiance.
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1. INTRODUCTION

The physical understanding of observed electron densities
and temperatures of solar coronal loops, in the quiet Sun and
in active regions, in nanoflares and giant flares, is based on
our concepts of heating and cooling processes. The inference
of heating functions in the solar corona is still an elusive mys-
tery, mostly because of the lack of suitable multi-wavelength
observations with high spatial resolution, high cadence, and
broad spectroscopic temperature coverage, while the cooling
processes are better understood, in terms of thermal conduc-
tion and radiative loss processes. The problem can be modeled
either with time-dependent hydrodynamic simulations or with
analytical solutions. A large number of time-dependent one-
dimensional (1D) hydrodynamic simulations have been per-
formed for coronal loops (e.g., Vesecky et al. 1979; Krall &
Antiochos 1980; Peres et al. 1982; Craig et al. 1982; Mariska
& Boris 1983; McClymont & Craig 1985a, 1985b; MacNeice
1986; Klimchuk et al. 1987; Klimchuk & Mariska 1988; Mok
et al. 1991; Jakimiec et al. 1992; Robb & Cally 1992; Peres 1997;
Betta et al. 1999; Reale et al. 2000a, 2000b; Warren et al. 2002;
Winebarger et al. 2003a, 2003b; Spadaro et al. 2003; Tsiklauri
et al. 2004; Winebarger & Warren 2004, 2005). A recent review
is given in Section 4.7 of Aschwanden (2004). Hydrodynamic
simulations calculate the evolution of temperature T(s, t) and
density n(s, t) (or pressure p(s, t)) in time, by solving the hy-
drodynamic continuity, momentum, and energy equations. They
have the disadvantage to be time-consuming, even for a single
run and on fast computers, and thus forward fitting to observed
light curves is an even more time-consuming process, because it
would require many iterations. Thus, hydrodynamic simulations
are, although accurate and powerful, an unpractical tool to infer
information on the coronal heating function from observations.

On the other side, analytical work has been tackled to model
the temperature and density of coronal loops, mostly focus-

ing on stationary (hydrostatic) solutions, where the heating rate
balances the energy losses by thermal conduction and radia-
tion. The most seminal papers deal with hydrostatic solutions
for (spatially) uniform heating (Rosner et al. 1978) and non-
uniform base heating (Serio et al. 1981), resulting into scaling
laws between the parameters of loop length, maximum temper-
ature, and base density. Some generalizations include also the
geometric divergence of loop diameters with height and non-
uniform heating localized at the loop apex. A recent review of
analytical solutions for hydrostatic loops is given in Section 3 of
Aschwanden (2004). Analytical solutions of the time-dependent
hydrodynamic equations have never been calculated in full gen-
erality, except for some special cases, such as steady-flow (or
siphon-flow) solutions (e.g., Cargill & Priest 1980; Noci 1981),
which is similar to the solar wind solution of Parker (1958).
These special solutions, however, ignore the energy equation
and temperature evolution. A recent review of work on time-
dependent solutions of the hydrodynamic equations is given in
Section 4 of Aschwanden (2004).

It appears that a general solution of the time-dependent
hydrodynamic equations is out of reach, even for a subset
of a particular (time-dependent) heating function, and thus
some suitable analytical approximations would be desirable
for many purposes. Some analytical approximations, mostly
of the cooling phase, have been formulated, e.g., by Fisher
& Hawley (1990), Kopp & Poletto (1993), Cargill (1994),
Cargill & Klimchuk (2004), but a complete approximation
of the density and temperature evolution during the entire
heating and cooling phase has been formulated only recently,
in the so-called Enthalpy-Based Thermal Evolution of Loops
(EBTEL) model by Klimchuk et al. (2008). The analytical
approximation of the EBTEL code by Klimchuk et al. (2008)
has the following advantages over the earlier work of Cargill
(1994): (1) it allows for arbitrary heating time profiles, (2)
treats radiative and conductive cooling simultaneously, and
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(3) is tested by a numerical hydrodynamic code (with the 1D
hydrodynamic code called Adaptively Refined Godunov Solver
(ARGOS) developed at the Naval Research Laboratory (NRL)).
However, the analytical approximation of the EBTEL code has
three major restrictions: (1) it is a 0D loop treatment in terms
of spatially averaged profiles of density n(t) and temperature
T (t), (2) it is limited to spatially uniform heating, and (3) it
is formulated in the form of differential equations (in terms of
dp/dt, dT/dt, dn/dt) that need to be iterated in time, starting
from a given initial condition.

In this study, we develop an analytical approximation to the
hydrodynamic evolution of the temperature and density in im-
pulsively heated 1D loops in explicit form, which does not re-
quire any time iteration or specification of an initial condition,
but is directly expressed as an explicit function of the heating
function parameters (heating rate H0, heating timescale τheat,
and spatial heating scale height sH) and loop length (L). We
derive physical key parameters directly from the hydrodynamic
energy equation and approximate the time evolution with simple
analytical functions. We compare the analytical approximations
with numerical 1D hydrodynamic computations of a parametric
study by Tsiklauri et al. (2004), carried out with the Lagrangian
Re-map code by Arber et al. (2001). The derived analytical ap-
proximations in explicit form should be useful to mimic time-
dependent hydrodynamic simulations, to model observed light
curves in soft X-rays and extreme-ultraviolet (EUV) of heated
and cooling loops in the solar corona by forward fitting, as well
as in flares, to infer the coronal heating function from light
curves in multi-wavelength observations, and to provide physi-
cal models of differential emission measure (DEM) distributions
for solar and stellar flares, coronae, and irradiance.

2. ANALYTICAL APPROXIMATIONS

2.1. The Energy Balance Equation

A basic hydrodynamic model of the evolution of a coronal
loop consists of an initial heating phase with subsequent cool-
ing by thermal conduction and radiation. The time-dependent
hydrodynamic energy balance equation of a one-dimensional
coronal loop as a function of time t and spatial coordinate s is
generally expressed as

ρT
D

Dt
S = EH − ER − ∇FC , (1)

where S is the entropy per unit mass of the plasma, D/Dt =
(∂/∂t + v ∂/∂s) is the total derivative in space and time,
ρ = nm ≈ nemp is the mass density, ne is the electron
number density, and mp is the proton mass. The left-hand side
describes the heat changes of the plasma due to heating and
cooling processes, which are specified on the right-hand side:
the volumetric heating rate EH (s, t) (per volume and time unit),
the radiative cooling rate ER(s, t), and the conductive cooling
rate ∇FC , expressed as a function of the conductive flux FC (s, t).
When a plasma is thermally isolated, so that there is no heat
exchange with the ambient plasma, the thermodynamic state is
called adiabatic and the entropy S is constant, so that the left
side is zero,

0 = EH − ER − ∇FC. (2)

Our approach is to subdivide the time evolution into two
time phases of either dominant heating or cooling (Figure 1).
For an impulsive heating process, the heating rate is initially
approximately balanced by thermal conduction, where radiative
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Figure 1. Generic time evolution of temperature T (t) and electron density n(t)
during an impulsive heating process with subsequent cooling, subdivided into
two time phases of (1) dominant heating (ts < t < tp) and (2) dominant cooling
(tp < t < te). The maximum of the temperature profile Tm = T (t = tm)
occurs at time tm, and the density has a peak value np = ne(t = tp) at time tp,
approximately when the temperature drops to half of the maximum value, i.e.,
Tp = Tm/2.

loss can be neglected, followed by subsequent cooling, where
initially the conductive loss rate is dominant (if the plasma is
sufficiently hot), while the radiative cooling rate dominates later
on. Thus, we can neglect the radiative cooling during the heating
phase, and the heating term during the cooling phase,

EH − ∇FC ≈ 0 for ts � t � tp, (3)

−ER − ∇FC ≈ 0 for tp � t � te, (4)

where we denote ts as the start time of heating, tp the density peak
time, and te the end time. Neglecting some of the non-dominant
terms in each respective time phase renders the energy balance
equation more treatable for an analytical solution in explicit
form.

In the following, we quantify the three terms of the energy
equation. The first term is the heating rate EH (s, t), which
is an unknown function in the solar corona, but is often
thought to be impulsive that can be approximated with a single-
peaked function in time, such as with a Gaussian, for an
elementary heating process. Also the spatial heating dependence
is completely unknown, but the most frequent parameterizations
include a spatially constant (uniform) heating function, or
heating functions concentrated either at the loop footpoint or
at the loop apex, falling off exponentially with distance. Thus,
we can parameterize the heating rate for these three cases as

EH (s, t) = H0 exp

(
− (t − tm)2

2τ 2
heat

)
exp

(
− s

sH

)

×
{

sH > 0 for footpoint heating
sH = ∞ for uniform heating
sH < 0 for apex heating,

(5)
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where tm is the time of maximum heating, τheat is the Gaussian
width of the heating time interval, sH is the heating scale height,
and H0 is the volumetric heating rate at the footpoint.

Equation (5) is a unified definition for all three cases, where
the heating scale height sH is positive for footpoint heating,
negative for apex heating, and infinite for uniform heating.

The next term in the energy equation is the conductive loss
rate ∇FC , which is expressed as the divergence of the conductive
flux FC,

FC(s) =
[
−κT 5/2(s)

dT (s)

ds

]
= −2

7
κ

d

ds
[T 7/2(s)], (6)

where the temperature profile T (s) refers to a particular time t
(but T(s, t) is time-dependent in general), and κ = 9.2 × 10−7

(erg s−1 cm−1 K−7/2) is the Spitzer conductivity. Thus, the
conductive flux depends only on the temperature and spatial
loop size, but not on the electron density n(s, t).

The other loss term in the energy balance equation is the
radiative loss rate ER, which can be written as a product
of densities and a temperature-dependent function, called the
radiative loss function Λ(T ), for optically thin plasmas,

ER = nenpΛ(T ) ≈ n2Λ(T ), (7)

where the coronal approximation of fully ionized plasma is
used (n ≈ np ≈ ne). The radiative loss function Λ(T ) is
usually approximated by piecewise power laws. Here we are
only interested in the coronal temperature range T � 1.0 MK,
for which the following approximations are commonly used
(e.g., Rosner et al. 1978):

Λ(T ) ≈
{

10−21.94 for 105.8 < T < 106.3 (EUV)

10−17.73T −2/3 for 106.3 < T < 107.6 (SXR).
(8)

Thus, the entire coronal temperature range seen in soft X-rays
(i.e., 2.0 � T � 40 MK) can be approximated with a single
power law Λ(T ) ∝ T −2/3, while the radiative loss rate in the
EUV range (i.e., 0.6 � T � 2.0 MK) is essentially constant.
Now, with Equations (2)–(8) we have defined the basic relations
to analytically derive the temperature and density evolution of
a heated and cooling coronal loop.

2.2. Temperature Profile During the Heating Phase

To derive the temperature profile during the heating phase
(for a given time t), we essentially balance the heating rate
EH (s) (Equation (5)) with the conductive loss rate ∇FC(s)
(Equation (6)), as expressed in Equation (3), which yields a
differential equation of second order in the spatial coordinate s,

EH (s) = d

ds

[
−κT 5/2(s)

dT (s)

ds

]
= −2

7
κ

d2T (s)7/2

ds2
. (9)

This second-order differential equation can be turned into a
double-integral equation by expressing it as an explicit function
of T (s),

T (s) =
[∫

ds

∫
− 7

2κ
EH (s) ds

]2/7

. (10)

For the case of uniform heating, the heating rate EH (s, t =
tm) = H0 is a constant along the space coordinate s, and the
integration yields two integration constants c1 and c2,

T uni(s) =
[
−7H0

4κ
s2 + c1s + c2

]2/7

, (11)

which can be determined from the boundary conditions at
the loop footpoint, T (s = 0) = T1, and at the loop apex,
T (s = L) = T2, yielding the temperature profile

T uni(s) =
[
−7H0

4κ
s2 +

(
T

7/2
2 − T

7/2
1

L
+

7H0

4κ
L

)
s + T

7/2
1

]2/7

.

(12)
Since the temperature boundary at the loop footpoint is in the
cool chromosphere, with a typical temperature of T1 ≈ 2 ×
104 K in the temperature minimum region, which is much lower
than the coronal temperatures of T2 � 106 K at the loop apex,
we have T1 � T2 and can readily neglect the terms with T1,

T uni(s) ≈ T2

[
s

L
+

7H0L
2

4κT
7/2

2

( s

L

) (
1 − s

L

)]2/7

. (13)

Assuming, furthermore, that the thermal conduction vanishes
at the loop top for symmetric loops, we have a further boundary
condition,

dT (s = L)

ds
= 0, (14)

which constrains the heating rate H0 as a function of the
loop apex temperature T2 and loop length L, i.e., by applying
Equation (14) to Equation (13),

H uni
0 = 4

7
κ

T
7/2

2

L2
, (15)

which is essentially the second scaling law derived in Rosner
et al. (1978), except for the numerical factor (4/7)κ ≈ 0.53 ×
10−6 that is about a factor of 2 lower due to the neglect of
the radiate loss rate during the heating phase. Inserting this
heating rate (required for symmetric loops) into the temperature
profile (Equation (13)), we can express the temperature profile
of uniformly heated loops simply as

T uni(s) = T2

[( s

L

) (
2 − s

L

)]2/7
, (16)

which is shown in Figure 2, where the symmetry of the loop
is most evident, since T (s) = T (2L − s). A comparison with
the Rosner–Tucker–Vaiana (RTV) solution (Rosner et al. 1978;
Equation (C1) therein) shows that our simpler approximation
(neglecting radiative loss during the heating phase) is fully
adequate for all practical applications (see Figure 2).

Vice versa, Relation (15) can be used to predict the maximum
loop temperature T2 based on the maximum heating rate H0 and
loop length L,

T uni
2 =

[
7L2H0

4κ

]2/7

, (17)

for the case of uniform heating.
Now we are generalizing the same calculation of the tem-

perature profile T (s) for non-uniform heating, by including the
heating scale height sH defined in Equation (5), which yields for
the temperature profile (in analogy to T uni(s) in Equation (11)),

T (s) =
[
− 7

2κ
H0 s2

H exp

(
− s

sH

)
+ c1s + c2

]2/7

. (18)

Substituting the integration constants c1 and c2 from the bound-
ary conditions T (s = 0) = T1 � T2 and T (s = L) = T2 yields
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Figure 2. Analytical solutions of the temperature profile T (s) is shown for
uniform and non-uniform heating (for a heating scale height ratio of sH /L = 1/3
at the footpoint, and sH /L = −1/3 at the apex). For comparison, we show also
the analytical solution for uniform heating calculated by Rosner et al. (1978),
which includes also radiative loss.

then (in analogy to Equation (13))

T (s) = T2

[ ( s

L

)
+

7H0s
2
H

2κT
7/2

2

(
1 − exp

(
− s

sH

)
−

( s

L

)

×
[

1 − exp

(
− L

sH

)] )]2/7

. (19)

Requiring symmetric loops with vanishing thermal conduction
at the apex (Equation (14)), we then obtain a condition for the
heating rate (in analogy to Equation (15)),

H0 = H uni
0 qH = 4κT

7/2
2 qH

7L2
, (20)

where we define a heating non-uniformity factor qH , which only
depends on the ratio sH /L and is unity for uniform heating,

qH = L2

2s2
H

1

[1 − (1 + L/sH ) exp (−L/sH )]
, (21)

which yields the loop profile expressed as a function of T2, sH ,
and L,

T (s) = T2

[ ( s

L

)
+ 2qH

( sH

L

)2
(

1 − exp

(
− s

sH

)
−

( s

L

)

×
[

1 − exp

(
− L

sH

)] )]2/7

. (22)

Expanding the exponential function in Equation (22) to second
order, i.e., exp (−x) = 1 − x + x2/2! − · · ·, one can show that
the asymptotic case of sH �→ ∞ lets the heating non-uniformity
factor qH converge to unity, the non-uniform temperature pro-
file T (s) (Equation (22)) converges to the uniform tempera-
ture profile T uni(s) (Equation (16)), and the heating rate H0
(Equation (20)) converges to H uni

0 (Equation (15)) for uniform
heating. An example of the analytical temperature profile T (s)
(Equation (22)) is shown in Figure 2 for footpoint heating with
a heating scale height ratio of sH/L = 1/3, which is about
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Figure 3. Comparison of analytical solutions of the maximum temperature
Tm = T (s = L, t = tm) at the loop apex with the values obtained from
numerical hydrodynamic simulations. The temperature values agree within a
few percents for both apex (crosses) and footpoint heating (diamonds).

the shortest stable heating scale height (Serio et al. 1981). The
temperature profile is clearly flatter than for uniform heating.
Alternatively, we show also an example for apex heating, with
sH /L = −1/3, which exhibits a steeper temperature gradi-
ent throughout the loop. This solution for a temperature profile
with non-uniform heating and exponential heating scale height
has also been calculated in Priest et al. (2000, Appendix A,
Equation (A3)), which agrees with our solution (Equation (22)).

Vice versa, we can use the condition of Equation (20) to
express the loop top temperature T2 as a function of the heating
rate for the general case of non-uniform heating,

T2 = T uni
2 q

2/7
H =

[
7L2H0

4κqH

]2/7

. (23)

In Figure 3, we show a comparison of the analytical ap-
proximations of the maximum temperatures T ana (s = L, t =
tm) = T2 (Equation (23)) with numerically calculated val-
ues T sim (s = L, t = tm) from hydrodynamic simulations
of Tsiklauri et al. (2004). We find a satisfactory agreement
of T ana/T sim = 0.96 ± 0.07 within about 10% for this set
of 56 simulations, covering four different heating timescales
τheat, five heating rates EH , eight loop lengths L, two heating
scale heights sH , with footpoint as well as loop top heating.
(However, because the numerical simulations of Tsiklauri et al.
(2004) slightly deviate in the definition of the spatial heating
function, simulating a Gaussian rather than an exponential one
(Equation (5)) used here, we find a small difference in the max-
imum temperature T2 for the case of apex heating, which we
correct with an empirical factor of (4/3), so T

Tsiklauri,apex
2 =

(4/3)T2.)

2.3. Temperature Evolution During the Heating Phase

The temperature profiles T (s) calculated above show that
the loop top temperature T2 is only a function of the heating
rate H0 and loop length L, in the case of uniform heating
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(Equation (17)), and in addition of the heating scale height sH , in
the case of non-uniform heating (Equations (21) and (23)). This
behavior is a result of the energy balance between heating and
thermal conduction. If we assume approximate energy balance
during each time step of the heating phase (which may not apply
for very short heating timescales, when the heating timescale is
significantly shorter than the conductive cooling time), we can
then relate the time evolution of the loop top temperature T2(t)
(Equation (23)) to the time evolution of the heating function
EH (t) (Equation (5)),

T (s = L, t) = Tm

[
exp

(
− (t − tm)2

2τ 2
heat

)]2/7

, (24)

where the maximum temperature Tm (at the loop apex s = L
and maximum heating time tm), called T2 in Equation (23), is
defined by

Tm = T (s = L, t = tm) =
[

7L2H0

4κ qH

]2/7

, (25)

with the constant qH (sH , L) being unity for uniform heating,
but larger (smaller) than unity for footpoint (apex) heating
according to the definition given in Equation (21). This is our
approximation of the temperature function in explicit form for
the time interval ts < t < tp of the heating phase.

In order to define a start time ts of the heating process, we
require that a significant heating rate has to be reached at the start
to produce a loop temperature that exceeds the ambient coronal
temperature T0, say T0 ≈ 1.0 MK. Using this requirement,
Equation (24) yields the following start time ts,

ts = tm − τheat

√
7 ln (Tm/T0), (26)

which amounts to a rise time of about 4–5 heating timescales
for a maximum temperature of Tm ≈ 10–30 MK.

2.4. Particle Density Evolution During the Heating Phase

The evolution of the electron density n(t) in the loop can
be understood in terms of the Neupert effect, which in essence
states that the accumulated density in a heated loop is an integral
function of the heating rate (e.g., Brown 1973; Veronig et al.
2005), because the chromospheric evaporation rate into the
coronal loop is a function of the chromospheric heating rate
or energy input,

n(t) ∝
∫ t

0
EH (t ′)

(
dnevap

dEH

)
dt ′, (27)

where (dnevap/dEH ) is the evaporation rate per heating power. If
we neglect cooling during the heating phase, free energy is con-
tinuously added to the loop in the form of evaporating material,
which increases the density in the loop monotonously, peaking
at the end of the heating phase (at time t = tp). Numerical hy-
drodynamic simulations of the chromospheric evaporation pro-
cess have been conducted for two different drivers (or heating
scenarios): for non-thermal particle precipitation (e.g., Somov
et al. 1981; Bloomberg et al. 1977; MacNeice et al. 1984; Nagai
& Emslie 1984; Fisher et al. 1985a, 1985b, 1985c; Mariska &
Poland 1985) and for heat conduction from the loop top (e.g.,
Nagai 1980; Somov et al. 1982; Cheng et al. 1984; Pallavicini &
Peres 1983; MacNeice 1986; Fisher 1989; Mariska et al. 1989;
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Figure 4. Heating rate EH (t) is given by a Gaussian function (thin solid curve).
The density function n(t) follows the time integral (thick solid curve) of this
Gaussian function (for a constant value of dnevap/dEH ) according to the Neupert
effect, which can be approximated by a semi-Gaussian function (dashed curve).
The time tm of the maximum heating rate and the time tp of the peak density are
indicated with dotted lines.

Gan et al. 1991; Falchi & Mauas 2002), which all show a mono-
tonic average density increase in the coronal loops until the end
of the heating phase.

For a temporally symmetric heating function EH (t), like the
(temporal) Gaussian heating function used in the numerical
simulation (shown in Figure 1, top), the density increases
in the time integrals (Equation (27)) before and after the
heating maximum time tm, by identical amounts due to the time
symmetry of EH (t),

nm = n(t � tm) =
∫ tm

0
EH (t ′)

(
dnevap

dEH

)
dt ′

= n(t � tm) =
∫ ∞

tm

EH (t ′)
(

dnevap

dEH

)
dt ′, (28)

and thus the value of the density nm = n(t = tm) at the
heating maximum time tm is expected to be half of the value
np = n(t = tp) of the final peak density nmax, which is reached
approximately at density peak time tp (see Figure 4). So we have
the relationship

nm = n(t = tm) = 1

2
n(t = tp) = np

2
(29)

due to the temporal symmetry of the heating function in the
integral (Equation (27)). The average pressure in the loop
increases during the heating phase and reaches a maximum
and the density peak time tp (as we verified in numerical
hydrodynamic simulations), so that we can approximate it with
a constant during this time interval (tm � t � tp),

pm = p(t = tm) = 2nmkBTm ≈ p(t = tp) = 2npkBTp. (30)

The latter two relations (Equations (29) and (30)) imply that the
temperature dropped by about a factor of 2 at the density peak
time (as illustrated in Figure 1),

Tp = T (t = tp) ≈ Tm

nm

np

= Tm

2
. (31)
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In other words, since the average density and temperature
vary reciprocally in an adiabatic loop, the temperature drops
to half the maximum value while the density doubles at the
peak time. Since we have already an analytical approximation
T (t) for the temperature evolution in Equation (24), we can
derive an analytical expression for the time interval tp − tm
when the temperature drops to half of its maximum value
Tm = T (t = tm). Setting the temperature to the half-maximum
value in Equation (24), i.e., T (tp) = T (tm)/2, we obtain the
density peak time tp,

tp = tm + τheat

√
7 ln 2 ≈ tm + 2.2τheat , (32)

so it is about two Gaussian heating timescales after the tem-
perature maximum time tm. The time interval 2(tp − tm) cor-
responds to the FWHM of the temperature profile T (s), since
T (t = tp) = T (t = tm)/2.

For an analytical approximation of the density evolution
n(t), we could make an ansatz with an integral function of the
heating function as expressed in Equation (27), which requires
also the knowledge of the evaporation rate per heating power,
(dnevap/dEH ). Assuming a constant value for (dnevap/dEH ),
the integral (Equation (27)) yields a monotonically increasing
function, which can be well approximated by the left-hand side
of a semi-Gaussian function,

n(t) ≈ np exp

(
− (t − tp)2

2τ 2
evap

)
for t � tp , (33)

with a Gaussian half-width that we call the evaporation
timescale τevap, which is defined by the requirement of
Equation (29), i.e., nm = np/2 in Equation (33),

τevap = (tp − tm)√
2 ln 2

=
√

7/2 τheat ≈ 1.87 τheat. (34)

A comparison of the time integral of a Gaussian heating rate with
the semi-Gaussian approximation is shown in Figure 4, which
shows that the difference is always less than 10% of the peak
density. The semi-Gaussian approximation has the same basic
properties as the time integral of the Gaussian heating function:
it is (1) monotonously increasing, (2) has the steepest slope at
time tm, and (3) asymptotically approaches the maximum value
at t = tp. Thus, the density profile n(t) (Equation (33)) increases
monotonously up to the maximum value np during the dominant
heating phase (t < tp), as shown in Figure 1 (bottom left).

Comparing this analytical approximation also with exact
solutions of the density evolution n(t) computed by numerical
hydrostatic codes (Tsiklauri et al. 2004), we find that a semi-
Gaussian function is an adequate approximation during the
dominant heating phase (t � tp) for most practical purposes (as
shown in the following), which justifies also our approximation
of a constant evaporation rate (dnevap/dEH ) in the time integral
of Equation (27).

2.5. The Peak Density

The density evolution n(t) in Equation (33) is expressed
with three variables, the peak density value np, the peak
time tp (Equation (32)), and the evaporation timescale τevap
(Equation (34)), which is a direct function of the heating
timescale τheat. In order to obtain an analytical expression for
the density peak value np, we are using the RTV (Rosner et al.
1978) and Serio’s loop scaling law for hydrostatic loops with

non-uniform heating in a stratified atmosphere (Serio et al.
1981). Since these scaling laws are derived for the condition
of energy balance between heating and conductive and radiative
losses (Equation (2)), they generally apply to stationary loops
in hydrostatic equilibrium. They are also approximately valid
for impulsively heated loops with sufficiently long heating
timescales, especially when the heating timescale is significantly
longer than the conductive (and radiative) cooling timescales,
because an energy balance is almost reached at the density
peak time. Thus, we employ Serio’s scaling law to find the
maximum density, at least for long heating timescales. For short
heating timescales, however, the maximum density predicted
by the RTV or Serio’s scaling law is not fully obtained, which
we correct with a dynamical correction factor that scales with
the ratio of the heating time to the loop filling time (see
Equation (42)).

For the case of uniform heating and constant pressure, the
relationship between loop pressure p, loop apex temperature T2,
and loop half-length L is given by the well-known RTV scaling
law (Rosner et al. 1978),

pRTV
1 = pRTV

2 = 1

L

(
T2

1400

)3

. (35)

(Here we label the footpoint position with the index 1 and the
apex position with the index 2.) For the case of non-uniform
heating (with a spatial heating scale height sH , exponentially
falling off above the footpoints) and gravitational stratification,
the loop scaling law was generalized by Serio et al. (1981) to

pSerio
1 = pRTV

1 exp

(
0.24

L

sH

+ 0.12
L

λT

)
, (36)

where λT is the pressure scale height

λT = 2kBT2

μmHg�
≈ 4.7 × 109

(
T2

1 MK

)
cm , (37)

with kB the Boltzmann constant, μ the mean molecular weight
(μ ≈ 1.27 for a hydrogen-to-helium abundance of 10), mH the
mass of the hydrogen atom, and g� the solar gravitation. The
apex pressure p2 is according to Serio’s definition,

pSerio
2 = p(s = L) ≈ pSerio

1 exp

(
− H

λT

)
, (38)

where H = [L/(π/2)] cos ϑ is the height of the loop, with ϑ the
inclination angle of the loop plane with respect to the vertical
to the solar surface. The electron density n2 = n(s = L) at the
loop apex derives from the apex pressure according to the ideal
gas law,

nSerio
2 = n(s = L) = pSerio

2

2kBT2
. (39)

The peak density derived from the RTV or Serio’s scaling
law applies strictly only for hydrostatic equilibrium, which is a
stationary state that is obtained in the limit of constant heating
(i.e., a heating time of τheat �→ ∞). Here, however, we deal with
impulsive heating that may have heating timescales τheat that
are shorter than the evaporation timescale or cooling timescale.
A crucial criterion whether the steady-state density is reached
at the loop apex is the loop filling time by chromospheric
evaporation, which is approximately the loop half-length L
divided by the sound speed cs,

τfill = L

cs

, (40)
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Figure 5. Maximum density enhancement with respect to the RTV density,
np/nRTV as a function of the ratio of loop half-length to heating scale height,
L/sH , for a set of eight hydrodynamic numerical simulations performed
by Tsiklauri et al. (2004), for sH = 8.75 Mm and loop half-lengths of
L = 9, . . . , 55 Mm (diamonds). The scaling law of Serio et al. (1981) yields
consistent predictions for L/sH � 3, but overpredicts the density enhancements
for higher values of L/sH � 3 where no stationary loop solutions exist due
to the Rayleigh–Taylor instability. Numerical hydrodynamic simulations yield
maximum density enhancements of np/nRTV � 2 for stationary solutions
(Winebarger et al. 2003a, 2003b). For dynamic simulations of impulsive heating
and subsequent cooling maximum (Tsiklauri et al. 2004), maximum density
enhancements of nmax/nRTV ≈ 0.5(1 + L/sH ) are obtained.

cs = 1.66 × 104
√

Te/μ cm s−1. (41)

If the heating time τheat is shorter than the sound crossing time
τfill, we expect that only a fraction τheat/τfill of the loop is filled
with evaporated plasma, while for very long heating times we
expect the steady-state solution with the maximum densities
calculated by RTV (for uniform heating) or by Serio et al.
(1981) for non-uniform heating. A simple approximation is an
exponential function that asymptotically approaches the steady-
state limit,

qdyn
n = 1 − exp [−τheat/τfill]. (42)

Thus, applying this dynamic correction factor, we expect ap-
proximate peak densities np at the density peak time t = tp of

np = n(t = tp) = nSerio
2 qdyn

n . (43)

The loop scaling law of Serio et al. (1981) is restricted to
heating scale heights of sH � L/3, because a density inversion
occurs for shorter scale heights that is unstable to the Rayleigh–
Taylor instability. Therefore, there are no stationary solutions for
L/sH � 3, as verified by hydrodynamic numerical simulations,
which yield density enhancements of only nmax/nRTV � 2
(Winebarger et al. 2003a). Here we compare with the maximum
densities obtained in the hydrodynamic simulations of Tsiklauri
et al. (2004) and find the following empirical limit (Figure 5)
for footpoint heating

nf oot
max ≈ nRTV × 0.5

(
1 +

L

sH

)
, (44)
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Figure 6. Comparison of analytical solutions of the peak density np = n(s =
L, t = tp) at the loop apex (Equations (45)) with the values obtained from
numerical hydrodynamic simulations. The peak density values agree within a
few percents for both apex (crosses) and footpoint heating (diamonds).

and the following constant for apex heating

napex
max ≈ nRTV × 0.7. (45)

In summary, we find the following analytical approximations
for the peak density np = n(s = L, t = tp) at the loop apex for
the different cases:

np = nRTV qdyn
n

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp (0.24L/sH + 0.12L/λT )
for sH > 0 (footpoint heating) and L/sH < 3

exp [0.5(1 + L/sH )]
for sH > 0 (footpoint heating) and L/sH � 3

0.7 for sH < 0 (apex heating)
1.0 for uniform heating.

(46)

In Figure 6, we show these theoretically predicted values
nana

p (s = L, t = tp) as a function of the exact values nsim
p (s =

L, t = tp) obtained from numerical hydrodynamic simulations
of a parametric study with 56 cases (Tsiklauri et al. 2004),
for both the cases of footpoint heating and apex heating. The
comparison yields an agreement within nana

p /nsim
p = 1.04 ±

0.21. Thus, our analytical approximations are expected to
predict the peak densities np within ≈20% compared with
numerical hydrodynamic simulations.

2.6. Temperature Profile During the Cooling Phase

After the density peak time tp, both the temperature and
density are decreasing, as expected when the cooling rate
dominates over the declining heating rate. Therefore, we can
largely neglect the heating rate for times t � tp and deal only
with losses by thermal conduction (which is proportional to
T 7/2/L2, Equation (9)) and radiation (which is proportional to
n2

e , Equation (7)). For typical parameters of flare loops, initially
the temperature (T � 10 MK) is sufficiently high so that
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Figure 7. Time evolution of heating function EH (s = L, t) (top panels), temperature T (s = L, t) (second row), density n(s = L, t) (third row), pressure p(s = L, t)
(fourth row), and logarithmic temperature–density diagram T (n) (bottom panels) of two hydrodynamic simulations from the set of Tsiklauri et al. (2004), for apex
heating (left) and footpoint heating (right). The curves of the hydrodynamic simulations are shown with thin linestyle, while our analytical approximations are indicated
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losses by thermal conduction outweigh radiative losses, which
generically applies when loops are detected in soft X-rays, while
radiative losses dominate later on in the cooling phase, when
the temperature drops to T ≈ 1–2 MK, when loops are detected
in EUV. Concentrating on the initial hot temperature at the
beginning of the cooling phase, neglecting radiative losses in
the energy equation, the change in internal energy de(t)/dt) is
mainly balanced by the thermal conduction loss rate,

mn
de(t)

dt
= d

dt
[3ne(t)kBT (t)] = − d

ds

(
κT 5/2 dT (t)

ds

)

≈ − 2

7
κ

T (t)7/2

L2
, (47)

with κ the Spitzer thermal conductivity and L the loop half-
length. This differential equation (Equation (46)) can be directly
integrated, if we apply the mean-value theorem to the time
dependence of the density 〈n〉 ≈ np, yielding

Tcond(t) = Tp

[
1 +

(t − tp)

τcond

]−2/5

(48)

with a “conduction timescale” τcond defined by

τcond(n = np, T = Tp) = 21

5

npkBL2

κT
5/2
p

. (49)

This solution was used in Culhane et al. (1994) to fit the cooling
of a flare plasma from T1 = 22 MK down to 12 MK. Antiochos
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& Sturrock (1978) derived a more general cooling function
by including the flow and obtained a similar solution (with an
exponent of −2/7 rather than −2/5 in Equation (47)).

Later on in the cooling phase, radiative cooling is always
dominant, so the internal energy loss de(t)/dt can be equated
to the radiative cooling rate,

d

dt
[3n(t)kBT (t)] = −n(t)2Λ(T [t]) ≈ −n(t)2Λ0T (t)−2/3 ,

(50)
according to the piecewise power-law approximation of the
radiative loss function Λ(T ) by Rosner et al. (1978). Applying
again the mean-value theorem for the time dependence of the
density n(t), we can integrate Equation (49) analytically and
find the solution

Trad(t) = Tp

[
1 − (t − tp)

τrad

]3/5

, (51)

with a “radiative cooling time” τrad defined by

τrad(n = np, T = tp) = 9kBT
5/3
p

5npΛ0
, (52)

where Λ0 = 10−17.73 erg cm3 s−1, since this definition of the
radiative cooling time is based on the relation Λ(T ) = Λ0T

−2/3

as defined for the SXR regime (Equation (8)).
The two phases of dominant conductive cooling and radiative

cooling have been combined in subsequent time intervals (e.g.,
Cargill 1994; Aschwanden & Alexander 2001). A simple
combination that is weighted by the shorter timescale is the
sum of the reciprocal values,

1

τcool
= 1

τrad
+

1

τcond
, (53)

which has been used in a number of studies. This definition
of the cooling time converges to the value of the conductive
cooling timescale (Equation (48)) if τcond � τrad, or to the value
of the radiative cooling timescale (Equation (51)) if τrad � τcond.
For an analytical function that describes the time evolution
of the temperature T (t) in the cooling phase, we try several
low-order polynomials and find empirically that a quadratic
dependence closely matches the temperature profiles obtained
in the numerical hydrodynamical simulations of Tsiklauri et al.
(2004),

T (t) = Tp

[
1 − (t − tp)

ncoolτcool

]2

for tp � t � te , (54)

which monotonically drops until

te = tp + ncoolτcool. (55)

The best-matching number of cooling times was found to be
ncool ≈ 3 for footpoint heating, and ncool ≈ 4 for loop apex
heating, respectively. The factor ncool essentially corrects for the
time variation of the conductive (Equation (48)) and radiative
(Equation (51)) cooling timescales, which both are changing
with time (t � tp), compared with the values calculated at
the beginning of the cooling phase (t = tp). We neglect here
complicated nonlinear effects in the later cooling phase when
the radiative (thermal) instability sets in and catastrophic cooling
occurs, which starts below temperatures T � 0.5 MK where the
radiative loss function Λ(T ) peaks.

2.7. Density Profile during the Cooling Phase

For the evolution of the density n(t) during the cooling phase,
we can use the empirical Jakimiec (power law) relation

T (t)

Tp

≈
(

n(t)

np

)2

, (56)

which was found to scale approximately with a power-law slope
of ≈ 2, as found in many earlier hydrodynamic simulations (e.g.,
Jakimiec et al. 1992; Serio et al. 1991; Sylwester et al. 1993;
Sylwester 1996). Inserting the temperature evolution in T (t)
(Equation (53)) into the Jakimiec’s relation (Equation (55)), we
obtain a linearly decreasing function:

n(t > tp) ≈ np

[
T (t)

Tp

]1/2

= np

[
1 − (t − tp)

ncoolτcool

]
. (57)

2.8. Summary of Analytical Code

We summarize now the analytical expressions in the order
they need to be calculated to provide approximate functions, in
explicit form, of the temperature evolution T(s, t) and density
n(s, t) for an impulsively heated coronal loop. The free input
parameters are the maximum heating rate Hmax, the heating
timescale τheat, the spatial heating scale height sH (which is
positive for footpoint heating, negative for apex heating, and
infinite for uniform heating), and the loop half-length L. The
variables are the space coordinate s, with a range of 0 < s < L
for a symmetric loop, and the time coordinate t, within a
validity range bound by the start time ts and end time te,
i.e., ts < t < te.

For the analytical calculations, we use the following phys-
ical constants: the Boltzmann constant kB = 1.38 × 10−16

erg K−1, the proton mass mp = 1.67 × 10−24 g, the mean
molecular weight in the corona μ = 1.27, the thermal Spitzer
conductivity coefficient κ = 9.2 × 10−7 erg s−1 cm−1 K−7/2,
and the radiative loss rate coefficient Λ0 = 10−17.73 cm3 s−1

(see definition in Equation (8)). Then we first calculate
some constants as a function of the free input parameters
(H0, τheat, sH , L), such as the base maximum heating rate H0
(as defined in Equation (5): H0 = Hmax for footpoint and uni-
form heating, and H0 = Hmax exp (−L/sH ) for apex heating),
the temperature maximum time tm (Equation (26)), the den-
sity peak time tp (Equation (32)), the heating non-uniformity
factor qH (Equation (21)), the maximum apex temperature
Tm = T (s = L, t = tm) (Equation (25)), the apex tempera-
ture Tp = T (s = L, t = tp) at the density peak time (Equation
(31)), the sound speed at the loop apex and maximum heat-
ing time tm, i.e., cs = 1.66 × 104

(
Tm/106K/μ

)1/2
[cm s−1],

the RTV loop pressure pRTV
1 (Equation (35)), Serio’s loop base

pressure pSerio
1 (Equation (36)), the pressure scale height λT

(Equation (37)), Serio’s loop apex pressure pSerio
2 (Equation

(38)), Serio’s apex density nSerio
2 (Equation (39)), the chromo-

spheric filling time τfill (Equation (40)), the dynamic correc-
tion factor q

dyn
n (Equation (42)), the loop apex peak density np

(Equation (45)), the evaporation timescale τevap (Equation (34)),
the conductive cooling time τcond (Equation (49)), the radiative
cooling time τrad (Equation (51)), and the combined cooling
time τcool (Equation (53)).

Now we have all parameter constants and can express the
evolution of the temperature profile T (s = L, t) at the loop
apex (Equations (24) and (54)),
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Figure 8. Simulated hydrodynamic temperature profiles T (t, s = L) at the loop apex (thin curves) and analytical approximations (thick curves) for a subset of 56
cases simulated by Tsiklauri et al. (2004). The selected cases include variations of the heating timescale theat and heating rate EH , for footpoint heating. The average
deviations ΔT/Tmax between the numerical values and analytical approximations are given in percentages in each frame.

T (s = L, t)

=
{
Tm

[
exp

( − (t − tm)2/7τ 2
heat

)]
for ts � t � tp

Tp [1 − (t − tp)/ncoolτcool]2 for tp � t � te

(58)

and the evolution of the density profile n(s = L, t) at the loop
apex (Equations (33) and (57)),

n(s = L, t)

=
{

np exp
(−(t − tp)2/2τ 2

evap

)
for ts � t � tp

np [1 − (t − tp)/ncoolτcool] for tp � t � te.

(59)

The spatial profiles can be approximated with equilibrium
solutions (which may be less accurate for short heating rates).
The spatial loop profile is then according to the solution given
in Equation (22) and the loop apex evolution T (s = L, t) given
in Equation (58):

T (s, t) = T (s = L, t)

[ ( s

L

)
+ 2qH

( sH

L

)2
(

1 − exp

(
− s

sH

)

−
( s

L

) [
1 − exp

(
− L

sH

)] )]2/7

. (60)

The pressure or density scale height λT (Equation (37)) of
hydrostatic loops is a function of the temperature, for which we
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Figure 9. Simulated hydrodynamic electron density profiles n(t, s = L) at the loop apex (thin curves) and analytical approximations (thick curves) for the same subset
of cases as shown in Figure 8, with similar presentation.

can use approximately the expression for the apex temperature
T (s = L, t), yielding (with Equation (38))

n(s, t) = n(s = L, t)

(
T (s = L, t)

T (s, t)

)

× exp

(
− h(s) − H

λp(T [s = L, t])

)
, (61)

where H = h(s = L) is the height of the loop apex.
This set of analytical Equations (58)–(61) provides then an
complete approximation to the spatiotemporal evolution of loop
temperatures T(s, t) and loop densities n(s, t). The validity range
of this analytical code is limited to loop apex temperatures in
the coronal range of Tm � 1.0 MK.

3. COMPARISON WITH NUMERICAL HYDRODYNAMIC
SIMULATIONS

In this section, we evaluate the accuracy of the analytical ap-
proximations computed in the preceding section by comparing
the solutions for the temperature T(s, t) and density evolutions
n(s, t) with computations from hydrodynamic codes, which
are accurate solutions of the time-dependent hydrodynamic
equations.

The evolution of heating and cooling in coronal loops was
simulated with a 1D radiative hydrodynamic code that incor-
porates the effects of gravitational stratification, heat conduc-
tion, radiative losses, external heat input, inclusion of helium,
and Braginskii viscosity in a parametric study with two dif-
ferent (apex and footpoint) heating functions (Tsiklauri et al.
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Figure 10. Temperature (left) and density profiles (right) for a subset of cases simulated in Tsiklauri et al. (2004) with varying loop lengths, from L = 13.8 Mm (top)
to L = 110 Mm (bottom). Major discrepancies are only found for the shortest loops (top).

2004). The numerical code that we use is a 1D version of
the Lagrangian Re-map code (Arber et al. 2001) with radia-
tive loss limiters. One set of 40 simulations was performed
with four different heating durations (with Gaussian half-widths
of τheat = 41, 82, 164, 329 s) and five different heating rates
(H0 = 0.6, 3, 15, 30, 60 erg cm−3 s−1), for a loop half-length
of L = 55 Mm, for both loop apex heating and footpoint
heating (localized within a Gaussian width of σs = 7 Mm
from either the apex or footpoint). A second set of 16 sim-

ulations was performed for eight different (full) loop lengths
(2L = 13.8, 27.5, 41.3, 55.0, 68.8, 82.5, 96.2, 110.0 Mm), for
a fixed heating duration of τheat = 329 s and a heating rate of
Hmax = 60 erg cm−3 s−1 for loop apex heating, and Hmax = 150
erg cm−3 s−1 for footpoint heating.

First, we compared the maximum temperatures T ana
m = T (s =

L, t = tm) at the loop apex s = L achieved during the entire
evolution of a heated loop (at the maximum time t = tm) that
we derive in our analytical approximation (Equations (25) and
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Table 1
Parameters of 56 Hydrodynamic Simulations (Tsiklauri et al. 2004) for Apex and Footpoint Heating, Compared with the Analytical Approximations of Loop Apex

Temperature and Densities

Heating Heating Loop Heating Simulated Analytical Simulated Analytical Temperature Density
Rate Timescale Length Scale Height Temperature Temperature Density Density Ratio Ratio

Hmax (erg σt L sH T sim
m T ana

m nsim
p /1010 nana

p /1010 T ana
m /T sim

m nana
p /nsim

p

cm−3 s−1) (s) (Mm) (Mm) (MK) (MK) (cm−3) (cm−3)

0.6 41 27.5 −8.75 13.7 14.1 0.7 0.7 0.98 1.01
0.6 82 27.5 −8.75 13.9 14.1 1.1 1.1 0.98 1.02
0.6 164 27.5 −8.75 13.8 14.1 1.5 1.4 0.98 1.03
0.6 329 27.5 −8.75 13.7 14.1 1.7 1.6 0.97 1.11
3.0 41 27.5 −8.75 22.1 22.3 1.9 2.1 0.99 0.93
3.0 82 27.5 −8.75 22.1 22.3 2.9 3.1 0.99 0.94
3.0 164 27.5 −8.75 21.9 22.3 3.8 3.8 0.98 0.99
3.0 329 27.5 −8.75 21.8 22.3 4.3 4.0 0.98 1.06
15.0 41 27.5 −8.75 35.4 35.3 5.3 6.2 1.00 0.86
15.0 82 27.5 −8.75 35.2 35.3 9.4 8.6 1.00 1.09
15.0 164 27.5 −8.75 34.9 35.3 10.7 10.0 0.99 1.07
15.0 329 27.5 −8.75 35.0 35.3 10.9 10.2 0.99 1.06
30.0 41 27.5 −8.75 43.3 43.0 8.7 9.8 1.01 0.89
30.0 82 27.5 −8.75 43.0 43.0 14.3 13.3 1.00 1.08
30.0 164 27.5 −8.75 42.6 43.0 15.7 15.0 0.99 1.04
30.0 329 27.5 −8.75 42.6 43.0 16.4 15.3 0.99 1.07
60.0 41 27.5 −8.75 52.8 52.4 15.1 15.4 1.01 0.98
60.0 82 27.5 −8.75 53.4 52.5 21.0 20.4 1.02 1.03
60.0 164 27.5 −8.75 52.3 52.5 23.7 22.5 1.00 1.05
60.0 329 27.5 −8.75 52.3 52.5 24.8 22.8 1.00 1.09
1.5 41 27.5 8.75 10.8 10.4 0.8 1.0 1.05 0.85
1.5 82 27.5 8.75 10.8 10.4 1.4 1.6 1.04 0.89
1.5 164 27.5 8.75 10.5 10.4 1.9 2.1 1.02 0.87
1.5 329 27.5 8.75 10.1 10.4 2.5 2.4 0.98 1.03
7.5 41 27.5 8.75 18.0 16.4 2.3 3.0 1.10 0.77
7.5 82 27.5 8.75 17.6 16.4 4.1 4.6 1.07 0.89
7.5 164 27.5 8.75 17.1 16.4 5.4 5.9 1.04 0.92
7.5 329 27.5 8.75 16.5 16.4 6.9 6.4 1.01 1.09
37.5 41 27.5 8.75 29.5 26.0 7.0 8.9 1.13 0.78
37.5 82 27.5 8.75 29.3 26.0 13.3 13.0 1.13 1.03
37.5 164 27.5 8.75 27.6 26.0 15.7 15.7 1.06 1.00
37.5 329 27.5 8.75 26.9 26.0 19.0 16.3 1.03 1.16
75.0 41 27.5 8.75 36.3 31.7 12.1 14.2 1.15 0.85
75.0 82 27.5 8.75 37.7 31.7 19.5 20.2 1.19 0.97
75.0 164 27.5 8.75 34.3 31.7 24.5 23.7 1.08 1.04
75.0 329 27.5 8.75 33.1 31.7 31.1 24.4 1.05 1.28
150.0 41 27.5 8.75 44.5 38.6 21.3 22.5 1.15 0.94
150.0 82 27.5 8.75 45.3 38.6 29.7 31.1 1.17 0.95
150.0 164 27.5 8.75 41.9 38.6 35.0 35.7 1.08 0.98
150.0 329 27.5 8.75 40.2 38.6 41.9 36.4 1.04 1.15
60.0 329 6.9 −8.75 35.2 28.0 37.7 26.1 1.26 1.45
60.0 329 13.8 −8.75 42.1 39.1 33.0 25.4 1.08 1.30
60.0 329 20.6 −8.75 47.7 46.7 28.9 24.1 1.02 1.20
60.0 329 27.5 −8.75 52.3 52.5 24.8 22.8 1.00 1.09
60.0 329 34.4 −8.75 55.5 57.1 23.0 21.6 0.97 1.07
60.0 329 41.3 −8.75 58.8 61.1 21.7 20.5 0.96 1.06
60.0 329 48.1 −8.75 61.2 64.5 18.8 19.5 0.95 0.97
60.0 329 55.0 −8.75 63.6 67.5 18.3 18.6 0.94 0.98
150.0 329 6.9 8.75 38.2 25.3 55.4 27.2 1.51 2.04
150.0 329 13.8 8.75 39.3 32.9 46.1 33.0 1.20 1.40
150.0 329 20.6 8.75 40.4 36.6 48.9 35.5 1.10 1.38
150.0 329 27.5 8.75 40.2 38.6 41.9 36.4 1.04 1.15
150.0 329 34.4 8.75 40.6 39.7 40.2 36.4 1.02 1.11
150.0 329 41.3 8.75 40.9 40.3 38.5 35.9 1.01 1.07
150.0 329 48.1 8.75 42.6 40.6 37.0 35.1 1.05 1.05
150.0 329 55.0 8.75 43.1 40.7 35.6 34.3 1.06 1.04

(58)) with the numerically obtained temperature maxima T sim
m

(Figure 3). Note that the theoretical expression for the maximum
temperature Tm (Equation (25)) depends only on the maximum

heating rate H0, loop length L, and heating scale height sH .
Note that the footpoint heating rate H0 used in Equation (25) is
related to the apex heating rate Hmax of the numerical simulation
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by Equation (5). The spatial heating function is described with a
Gaussian with width σs in the numerical simulations of Tsiklauri
et al. (2004), while we parameterize it with an exponential
scale height sH . Constraining the two slightly different spatial
heating functions by the same maximum value and integral
value yields the conversion sH ≈ 1.25σs . The comparison is
shown in Figure 3 for 56 numerical simulations, where we
find that the 56 cases within T ana

m /T sim
m = 0.96 ± 0.07. The

remaining small differences may be attributed to the slightly
different definitions of the spatial heating function or to the
effects of dynamic flows and radiative losses neglected in the
analytical approximation. The simulated and analytical values
for the maximum temperatures and peak densities are also listed
in Table 1.

Second, we compared the peak densities nana
p = n(s = L,

t = tp) at the loop apex s = L and peak time t = tp that
we derived in our analytical approximation (Equations (46)
and (59)) with the numerically obtained maxima nsim

p

(Figure 6). The comparison with the 56 numerical simulations
shown in Figure 6 shows a good agreement of these peak den-
sities, which agree within nana

p /nsim
p = 1.04 ± 0.21. This agree-

ment in density within � 20% is relatively good, given that
density fluctuations associated with dynamic flows in impul-
sively heated loops are of the same magnitude.

In Figures 7–10, we show comparisons of time profiles com-
puted with our analytical code versus numerical hydrodynamic
simulations of Tsiklauri et al. (2004). The time profiles of the
heating rate EH (t), temperature evolution T (t, s = L), den-
sity evolution n(t, s = L), pressure evolution p(t, s = L), and
temperature–density phase diagram T (n) are shown for two
cases with apex and footpoint heating in Figure 7. To each time
profile we quantify also the mean deviations between the an-
alytical and numerical solutions, i.e., ΔT/Tmax, Δn/nmax, and
Δp/pmax, which are all of the order ≈20%. These mean devia-
tions are also listed for all 56 cases in Table 1.

In Figure 8, we show the temperature profiles of 18 cases
with various heating timescales and heating rates (with foot-
point heating). The corresponding 18 density profiles are shown
in Figure 9. In Figure 10, we show the temperature and density
profiles of a subset of Tsiklauri et al.’s (2004) simulations with
varying loop lengths (2L = 14–110 Mm). We see that the ana-
lytical time profiles agree with the numerically simulated time
profiles in the average with an accuracy of about � 20% in tem-
perature and density, similar to the agreement of the maximum
values (Figures 3 and 6). The analytical approximations can
therefore be considered as sufficiently accurate for most practi-
cal applications in the parameter regime explored by Tsiklauri
et al. (2004), which ranges from hot active region loops to the
hottest flare loops. Moreover, our approximations apply to uni-
form as well as to non-uniform (footpoint and apex) heating.
The numeric code of these analytical approximations can be
requested from the author in the form of IDL procedures.

4. CONCLUSIONS

We developed a simple analytical approximation of the hy-
drodynamic evolution of the temperature T(s, t) and electron
density n(s, t) for an impulsively heated and subsequently cool-
ing coronal loop. The analytical approximation is expressed
in explicit form as a function of the input parameters of the
temporal and spatial heating function, such as the maximum
heating rate Hmax, the heating timescale τheat, the spatial heating

scale height sH , and the loop length L. The analytical solu-
tion is generalized for both uniform and non-uniform (expo-
nentially decreasing) spatial heating functions. The analytical
expressions are derived from the hydrodynamic energy and mo-
mentum equation, complemented with the loop scaling laws of
RTV and Serio, the Neupert effect, and the empirical Jakimiec
relationship. The assumptions of our analytical model include
(1) the heating rate is a symmetric (e.g., Gaussian) function in
time, (2) losses by thermal conduction are dominant during the
heating phase, (3) chromospheric evaporation is characterized
by the Neupert effect and describes the density increase during
the heating, (4) thermal conduction dominates the initial cooling
phase, and (5) the density decrease during the cooling phase is
characterized by the Jakimiec relation, T ∝ n2. The analyti-
cal approximations are tested with the numerical hydrodynamic
simulations of a parametric study (Tsiklauri et al. 2004) that cov-
ers a large parameter space of heating functions, mostly relevant
for flare loops. The analytical approximations match the numer-
ical simulations with an accuracy of ≈20% in temperature and
density.

Some caveats have to be made for the validity of the approxi-
mations derived here. The validation is only based on 56 numeric
hydrodynamic simulations by Tsiklauri et al. (2004), which
were mostly designed for flaring conditions (i.e., high heating
rates, maximum temperatures in the range of T ≈ 10–50 MK).
That parametric study includes apex and footpoint heating only,
but no uniform heating. The hydrodynamic code of Arber et al.
(2001) used in Tsiklauri et al. (2004) has not been compared
with other codes yet, but a major benchmarking program is
in progress (A. Winebarger 2009, private communication). Re-
garding the analytical treatment, we neglected flows, kinetic
energy, and the gravitational potential in the energy equation,
but a time dependence of the loop filling is included in the den-
sity evolution (Equation (42)). Some of the neglected effects
are corrected by empirical constants, that are optimized for the
Tsiklauri data set, but may slightly change when compared with
other numerical simulations. We plan a major parametric study
with the EBTEL code (Klimchuk et al. 2008), which is a very
fast code, but is restricted to uniform heating and parameters
averaged over the loop length.

The analytical expressions derived here can be used to
efficiently model the hydrodynamic evolution of coronal loops
and flare loops. The analytical density n(s, t) and temperature
evolutions T(s, t) can easily be convolved with an instrumental
temperature response function R(T ) in order to simulate light
curves of multi-wavelength observations in EUV and soft
X-rays. Forward fitting of our simple analytical expressions
to observed light curves in various temperature filters can then
be used straightforwardly to infer the underlying spatial and
temporal heating function of coronal loops. Superimposing
the evolutions of multiple loops can mimic flare light curves.
Summing the evolutions of light curves from an ensemble of
loops with suitable distribution functions of geometric loop
parameters can easily reproduce DEM distributions of an active
region, the full Sun, or the solar or stellar irradiance. In all
these applications, analytical expressions in explicit form of
the heating function are a key tool to model the observed
light curves, which would not be practicable with numerical
hydrodynamic simulations, the only tool we had at hand so far.
We think, therefore, that these analytical functions are valuable
tools for future modeling and interpretation of soft X-ray and
EUV multi-wavelength data from the TRACE, SOHO, STEREO,
Hinode, and SDO missions.
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The analytical code is available as IDL procedures
(HYDRO APPROX1.PRO and HYDRO APPROX2.PRO) in
the Solar Software (SSW) library. Interested users can also re-
quest a copy from the first author.

The authors are most indebted to Tony Arber for providing the
code of the numerical hydrodynamic simulations. We acknowl-
edge also valuable and inspiring discussions with Jim Klimchuk,
Harry Warren, Amy Winebarger, Barbara Sylwester, and other
participants of the three Coronal Loop Modeling workshops in
Paris, France (2002 November 13–15), in Palermo, Sicily (2004
August 1–3), and in Santorini, Greece (2007 June 18–21). Part
of this work was supported by NASA contract NAS5-38099
(TRACE mission).
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