STEREO *IMPACT*

FM1 SWEA/STE-D Thermal Vacuum Test Report

IMPACT-SWEA-FM1-TVac-Report.doc Version A – 2005-Mar-22

David Curtis, UCB IMPACT Project Manager

Document Revision Record

Rev.	Date	Description of Change	Approved By
А	2005-Mar-22	Preliminary Draft	-

Distribution List

Dave Curtis, UCB Jeremy McCauley, UCB Lil Richenthal, GSFC

Table of Contents

Document Revision Record	i
Distribution List	i
1. Overview	L
1.1. Introduction	[
1.2. Applicable Documents	[
2. Test Setup	5
3. Test History	5
4. Temperature Profile	5
5. Trending	L
5.1. Trending Data Explanation	[
5.2. STE-D Trending Data)
5.3. SWEA. LVPS Trending Data	}
6. TQCM Data4	ŀ

1. Overview

1.1. Introduction

The Solar Wind Electron Analyzer and Supra-Thermal Electron Detector (Downstream) (SWEA/STE-D) is the part of the STEREO IMPACT instrument suite. It resides at the end of the IMPACT boom.

This document describes the results of the thermal vacuum testing performed on the FM1 SWEA/STE-D unit. This testing was performed at U.C. Berkeley following the test procedure called out in reference 1. The thermal balance test has a separate test report (see reference 4).

The SWEA/STE-D FM1 unit has satisfactorily completed its thermal vacuum test program and has met all of its requirements spelled out in reference 1 and 2.

1.2. Applicable Documents

The following documents are closely interrelated with this specification. All documents can be found on the Berkeley STEREO/IMPACT FTP site unless otherwise indicated:

http://sprg.ssl.berkeley.edu/impact/dwc/

- 1. SWEA and STE-D Revised Test Plan1
- 2. APL Document APL 7381-9003 Rev A STEREO Environment Definition, Observatory and Instrument (on APL web site)
- 3. IMACT-SWEA-CPT
- 4. BOOM_SWEA_TEST_REPORT

Fig 1. FM1 SWEA/STE-D

2. Test Setup

The "Jeffrey" thermal vacuum chamber at U.C. Berkeley was used for the thermal vac of the FM1 SWEA/STE-D.

The FM1 IDPU was setup outside the chamber as indicated in the test plan (reference 1).

In addition to chamber monitoring TCs (on the baseplate, and shroud), a number of chamber TCs were attached to the exterior of the instrument to monitor the temperature. These instrument-mounted TCs, together with the internal passive PRT sensor attached to the SWEA chassis, were used to determine when temperature soaks were met. We could not mount a TC to the STE-D unit due to surface issues and size, so only the internal sensor was available for that, plus a TC attached to the heat strap used to control the STE-D temperature (the heat strap typically ran 10-20C colder than STE-D due to less than ideal thermal coupling).

3. Test History

This test started on 2005-January-29, following vibration testing. Following a 48 hour bake at non-op hot (+40C), the instrument was transitioned to cold. It was found that we could not get STE-D cold enough, so chamber was broken to improve the conduction between the heat strap and the cold plate.

Testing was re-started on February 3 with an 8-hour bake-out at non-op hot, followed by a transition to non-op cold (which was achieved this time). The remaining cycling went according to plan with CPTs at each soak and cold-start at high and low bus voltage at the first and last cycle. Except for the first and last cycle and a pause in the middle of cycle 3 the unit was operated continuously with SWEA high voltage on. We ran with both a Ni63 electron source and a small electron gun in the chamber to stimulate SWEA. STE-D was stimulated by its internal door source.

4. Temperature Profile

SWEA PRT is the spacecraft-monitored temperature sensor attached to the SWEA pedestal (internal). ISWEAMCPTemp is telemetry from a thermistor on the MCP board in the SWEA unit. ISWEADACTemp is telemetry from a thermistor on the DAC board in the SWEA pedestal. ISTEDTemp is telemetry from a PRT in the STE-D unit. Note that on Feb 8 during cool-down the survival heater was left on by mistake for a while, slowing down the cool-down of the SWEA pedestal.

STEREO IMPACT FM1 SWEA/STE-D Thermal Vac

Dave Curtis

5. Trending

5.1. Trending Data Explanation

The trending data on the previous pages is extracted from the trending file for the STE-D and SWEA plus LVPS. It is composed of values measured during the CPT, either directly, or from a post-processing fitting function which evaluates the data collected.

- The Door Open and Door Close columns show two times; from application of power to the time when the door comes off the first switch (starts moving), and the time from the application of power to the time when the door reaches the destination switch.
- Threshold values are DAC levels, corresponding to ~100eV per step. Requirement is <5keV.
- The test pulser fit data measures the electronic performance. Of particular interest is the FWHM, which measures the electronic noise in the system. Other values can be used to look for thermal drift and other trends in energy gain and offset.
- The "door source" fit data measures the calibration source on the STE door, and so is a end-to-end measurement (albeit using mostly photons rather than electrons). Again the FWHM is of interest (requirement < 2keV). In a few cases the short integration door source test was skipped due to time limitations; the long integration test is a better test for most purposes.
- SWEA trends show the primary current (data logger) and secondary voltages (instrument housekeeping). High Voltage supply monitors are also trended.

- -...

		SNEASTED		SWEA/		Doot	Door						1	TestPalser				0181	source	1.06			Long Integration Don'r Tourse (Door LUT)					
Date	FIG:	Tast.	Printly current on A	TSIND	ATE-D DAC Temp	HATEDCI: (TIA)	r üpen (NeC)	Close 6999	0.85	HERM	Det	mash	01feet (99070)	Gan (XMUR)	CHV. (1997)	Test Gain	FWRM (RW)	Ottert 3 210	Gala Curr, (Rewiter) (1/Kev)	110V-05-2	2007 1/5	FWI-III	AscTille (Sec)	Offset (NW) (Gall Gave. Kortan (180)	Stor US	LINNY O'S BROW US	- FWHE
0018 2004	D4 100 B3033 Jim	RMT Boom BST , with SWEA (shield actively	142	21	327	17.2	0.3810.38	025/131	29	10/15/21004			8 0.7 0.7 0.7 0.7 0.7 0.7	0.3864 0.3872 0.3879 0.3868	7.80E-06 7.50E-06 6.20E-06 7.40E-06	13.4321 12.5368 13.2325 13.6343	1335 1139 1239 1235	0.07	0.3991 (8+5 (F) 0.3995 (6+5 (F) 0.3990 (8+5 (F) 0.3992 (8+5 (F)	98.63 54.12 43.45 42.30	29.95 28.25 24.84 24.63	1,404 1,140 1,200 1,300	1720	0.05	0.3979 3.08E-0 0.3841 5.09E-0 0.3845 5.09E-0 0.3843 0.30E-0	5 39.34 5 38.30 5 30.53 5 30.54	20.03 1.11E-02 10.84 1.11E-02 17.41 1.13E-02 16.96 1.23E-02	1.38 1.75 1.30 1.30
0:18 2004	ocial Missa Ira	RMI Boomist, MID SME A obtained actively Ground fixed		23	27	15			20	10/15/2006		0 9 2 3						9 	0) 		1		450	0.05 0.05 0.05	0.5999 632E-8 0.5847 6.28E-8 0.5845 1.92E-8 0.5842 6.95E-8	5 58.36 5 57.00 6 44.16 5 43.97	2645 181502 2636 125502 2646 111502 2658 18550	0.907 0.946 0.946
0e1162904	14 10 16 00000 JM	RM Sub IAT @ Caleth		262	32.9	16.8	0.38	0.2571.31	20	10152104		0 1 2	0.00	0.3068 0.3062 0.3064 0.3064	7.338-01 9.578-01 0.456-01 7.238-05	13.2073 13.4294 13.1306 13.4396	0835 0765 0765	4.07 4.04 4.04	0.3009 Ge-5 (F) 0.3002 Ge-5 (F) 0.3079 Ge-5 (F) 0.3079 Ge-5 (F)	55,17 55,19 6193	27.82 27.50 23.67 23.67	0.045	690	0.05 0.05 0.01	0.3916 4.01E-8 0.3845 5.94E-8 0.3840 5.94E-8 0.3840 5.94E-8	5 55.54 5 54.77 5 43.56 6 43.13	27.54 1.47E-02 27.40 1.91E-02 24.13 1.11E-02 72.40 1.51E-02	0.98 0.054 0.084
Nov3 2004	0411824363 tra	First toom subs post- EMIC at UCB	1365	245	32.0	17.5	0381038	0257838	20	10152304		0 1 1 1 2 1		0.3072 0.3063 0.3872 0.3872	7.228-06 9.338-01 8.098-01 2.058-01	13 3001 13 4325 13 7351 13 7351	0549 0501 0537	4.05	0.3913 4705-15 0.3019 4206-15 0.321 3.342-15 0.325 5.315-15	54,60 5145 49,39 42,47	20 80 37 70 23 42 22 54	0.048	940	0.06 0.05 0.05	0.5966 6.51E-8 0.3680 3.50E-8 0.3648 0.55E-8	5 52.74 5 54.33 5 43.57 43.57	27.27 128E02 27.31 128E02 21.94 128E02 22.94 128E02 22.71 108E02	0.920
Dae 8 2004	04128183483 810	IN 18WEA pro- Thomal Laures	128	22	20	163			29	2/18(2006				0.3863 0.3863 0.3866	7.04-00	13,2962 12,4179 13,1251 11,520	0771 0719 0705	00 00 00	0.3911 Ge-5 (F) 0.3853 G2-5 (F) 0.3853 G2-5 (F) 0.3853 G2-5 (F)	\$5.15 54.51 44.02	27 00 20 50 22 78	0.080	850	0.05 0.01 0.00	0.3964 T354-4 0.3576 8852-4 0.3841 T255-4 0.3841 T255-4	55.24 5 53.91 5 43.54	20.17 100E40 20.97 100E40 20.97 100E40 20.97 100E40 21.02 790E40	0.099
Dec 10 2004	04 1210-000 lim	FMD SWEA TRAINal Rabits	139	13	-10	13	0.38 (0.50	0.50/8.51	20	2182005	3		4 0.1 0.00 2 0.1	0.3877 0.3864 0.3866	7.91-06 9.021-06 8.951-06	13,4961 12,4911 13,2748	1151 1097 0024	0.09	0.3914 (k+6 (r) 0.3901 (k+6 (r) 0.3803 (k+6 (r) 0.3803 (k+6 (r)	5.12 55.48 41.95	26 62 27 16 2317	1.121 1.103 0.061	1300	0.05	0.3800 6.77E-4 0.3914 5.54E-4 0.3912 5.58E-4	5 65.91 5 55.78 5 45.71	20.71 10/E02 26.91 1.71E02 25.53 1.61E02	1.115 1.075 0.987
Jan 26 2905	0511270000 line	FIH SWEA Fronds	140	243	315	153	01810.30	0.00/535	20	2102005	A 8000		1	0.44	1201-0	118-112			00-5 (F) 50-5 (F) 6e-5 (F) 00-5 (F)	GLAP	2210	200		- detta	0.111 0.244		12.00 10.000	0.00
Jan 27 2905	os era sertos den	Flatt SOIEA Pool-allo	428	181	21.2	14.5	0.10 10.50	0.3571.31	50	21/1/2005									60-5 (F) 0e-5 (F) 0e-5 (F)									
Fel 4 2005	05 (25 40000 lin	FMI SWEA Thermal ValeHoli#2	150.6	-33	ara	15	0.34 (0.36	0.8578.31	190	2/10/2009		0		0.3874 0.3891 0.3986	7.908-00 9.926-06 9.675-06	12.0311 12.2738 12.8771	0586 0586 0575	0.01 0.01 0.01	0.3903 Ge-5 (F) 0.3903 Ge-5 (F) 0.3903 Ge-5 (F)	45.35 43.47 38.94	48 90 19 78 19 54	6.703 0.721 6.727	1290	0.02 0.01 0.02	0.3907 6e-6 (F) 0.3900 62-6 (F) 0.3903 5 10E-6	51.59 55.19 64.57	2171 111E40 25.11 873E40 21.90 9.25E40	0.7%
Fet 4 2006	05 125 400 00 fm	Fill SWEA Thermal Vice Cold #2	114	-90.2	-42.4	ាម	0751075	125/121	150	218205		1	0.2	0.3874 0.3896 0.3896	7.40E-00 102E-01 8.73E-06	12.4036 12.2018 12.9038	5459 5487 5475	411	0.3055 50-5 (F) 0.3060 60-5 (F) 0.3060 60-5 (F) 0.3044 60-5 (F)	\$2,60 \$2,20 \$4110	2410 2400 2122	0.572 0.685 0.615	930	0.11 0.09 0.10	0.361 6e-5(7) 0.3963 6e-5(7) 0.3963 6e-5(7)	53.59 63.59 43.58	2420 121E02 2420 121E02 2420 166E00 2146 5.71E05	D.672 D.622 D.622
Fee 5 2006	os iza secolo din	FMI aweA themai Nachbi#3	156	NZ	378	ાદ્ય	0.90 10.90	050/151	150	2/18/2005		1		0.3874 0.38874 0.38862 0.38862	7.64E-06 9.77E-06 0.60E-06	13.4217 12.2738 12.5771	0.645 0.531 0.565	0.01	0.2003 Ge-5 (F) 0.2007 Ge-5 (F) 0.2003 Ge-5 (F)	41.32 54.13 54.61 42.67	2000 20190 2017 2195	0.716 0.716 0.722	000	0.05 0.01 0.02	0.3607 60-5(7) 0.3607 8:54E-4 0.3687 60-5(7)	62.60 63.60 5 54.58 43.90	2434 2011-32 2434 1281-02 2434 1281-02 2114 1281-02	0.70
Feb 7 2005	05 828 NOOD In 1	FMH SWEA Thermal Via: Cold 83	125.2	-90.5	-40-1	12.3	11011.12	1.12/1.12	20	21/12/05		0	0 0.2 0 0.1 0 0.1	0.3898	7.248-01 9.928-01 0.516-05	13 2723 12 2005 13 0050	0535 0477 0475	0 13 4 10 4 11	0.2005 (0:-5 (F) 0.3000 (0:-5 (F) 0.3009 (0:-5 (F) 0.3009 (0:-5 (F)	30.44 52.01 43.62	17.80 24.50 19.60	0.553	2000	0.10 0.09 0.10	0.3990 62-6 (F) 0.3994 60-5 (F) 0.3995 68-6 (F)	52,19 52,49 42,50	21.34 1.04E-02 21.34 1.63E-02 20.75 1.24E-02 20.75 1.24E-02	0.05
Feb 8 2005	os este nación des	FMI SWEA Therrat VacHol SI	161	-37.1	43.8	14.3	0.50 10.50	0.60/151	20	31/12005		0		0.3871 0.3863 0.3863	7.812-08 9.725-08 9.726-06	13.836 13.7547 12.3245 13.9906	0539 0575 0559	4.00	0.5911 GH3 (F)	2010	10.00	0.075	960	0.02	0.3831 (2.114-4 0.3831 (2.45 (7) 0.3985 (2.45 (7) 0.3985 (2.45 (7)	54.28 54.58 54.58 54.58	2444 102502 2400 104502 2106 171500	0.75
Feb 8 2006	05.020 M0000 fm	FMH SWEA Thernal Vide Ceid A4	126.5	-01.8	-39 E	14.4	12511-26	160/158	150	3/193005		0 1 1 2	5 0.2 SNo R 9 0.2	0.3895	7.51E-06 0.55E-06	12.8641	0495						930	0.11 0.09 0.10	0.35(7 6.3(E)) 0.35(3 60-6 (F)) 0.35(3 60-6 (F)) 0.35(3 60-6 (F))	5 42.17 53.50 54.19 43.68	2135 558E43 2135 588E43 2135 104E43 2133 124E43	0.69
Fe8 9 2005	05 (21 90000 i 14	FMI SWEA Thermal VacHoliP5	118	38.4	398	14.4	0101030	050/151	150	218200		1	6 0.0 6 0.0 7 0.0	0.3890	7.001-00 9.041-06 0.001-06	13,0960 12,2562 12,5761	0431 0841 0565						780	0.02 0.01 0.01	0.394 6.02E4 0.3947 6.02E4 0.3942 6.13E4	5 51.24 5 55.54 5 43.81	24.73 202E-02 24.73 202E-02 21.25 1.90E-02	0.750
Feb 5 2005	05 121 00000 J ra	FMD SWICA TRAINAL VGC COD AS	135	-94.D	-39.5	12.4	121.2	125/125	20	2102005		1	00 00 00 00 00	0.3800 0.3873 0.3876 0.380T	8.74E-06 9.51E-06 8.40E-08	13.201 13.201 12.2761 12.9690	0495 0495 0495	4 H 0.09 0.10	0.3001 (0+6 (F) 0.2006 (0+5 (F) 0.3045 (0+5 (F)	\$5.48 \$2.08 45.80	2351 2394 2111	0.508 0.508 0.508	2050	0.02 0.11 0.09 0.09	0.3840 T.43E4 0.3862 field (F) 0.3867 field (F) 0.3862 field (F)	53.29 53.29 53.11 53.11	21.91 0.05 22/E02 21.91 0.05E00 21.92 1.5/E02 20.97 1.0E02	0.625
Faib 10,281,05	0512100000 lim	TMT SWEA THOMAS Virc Holds	140	-55	м	- 14.4	0.9010.50	050/151	192	2/18/2006		1		0.3874 0.3874 0.3890 0.3864	7.70E-06 9.65E-06 0.73E-06	13.4548 13.1268 12.2668 13.8743	0631 0631 0985 0964	4.07 4.07 4.08 4.08	0.2001 (0+5 (F) 0.2001 (0+5 (F) 0.2003 (0+5 (F) 0.2003 (0+5 (F)	53.54 54,68 41.TP	10.10 2447 2496 2125	0.780	700	0.03 0.00 0.02	0.389 676E4 0.393 626(F) 0.3985 6.50E4 0.3885 9.03E4	54.45 54.45 55.64 54.397	20.00 1.36E42 2447 1.56E42 24.00 2.38E42 24.00 1.06E40	0.78
Feb 1029.05	0512100060 Im	FMH SWEA Thernal Van Crist 50	138	-90.7	-30.2	115	1121126	120/151	150	2/10/2005		0 1 1 2	0.0 0 -0.1 0 -0.2	0.3807 0.3877 0.3899 0.3871	7.29E-06 9.90E-06 9.72E-06	13.3%6 13.3%6 13.2317 13.6985	0567	0.00	9.9800 (an-6 (F)	41.02	2196	0.941	1210	011 0(9 010	0.5911 5.14E-4 0.5961 5.14E-4 0.5964 5a-5 (F) 0.5911 7.12E-4	5 50.00 50.21 50.21	22.70 1.81E-02 22.99 1.71E-02 19.94 1.41E-02	0.75
Feb 10 28 05	05 i 21 000 00 i m	FMI SWEA Thermal Virt Hola?	148	31.9	378	18,4	0.38	0.3871.31	20	2182005		0 4 2		0.3890 0.3895 0.38970 0.3899	7.762-06 9.512-06 9.512-06 9.512-06	13.362/ 13.2064 12.3590 13.0201	0994 0636 0577 0571	0.02 0.02 0.02	0.2009 00-5 (F) 0.2003 00-5 (F) 0.2003 00-5 (F)	52.66 54.77 43.68	24.23 25.50 21.74	0.753 0.752 0.759	930	0.02 0.02 0.02	0.3560 82.5 (F) 0.3556 7.34E4 0.3636 0.45E4 0.3689 6.00E4	30.5 ⁰ 5 54.34 5 54.41 5 43.49	2442 179E02 2442 179E02 2410 149E02 2136 128E02	0.692
	C2 (26 C40/24	122512312170	1 2004	2020	1.1.1.1	2000	0.000	0.000	11	100.000	<u> </u>	0	0.0	0.3885	7.036-06	13,4231 11,2390	05/9	0.05	0.3070 (2+3 (F) 0.3050 (2+5 (F)	41.97	20.72	0.752	100	0.02	0.36/1 7 15E-8 0.3652 6e-6 (F)	5 42.72 52.88	20.30 15/E-02 24.00 7.04E-03	0.75

1,389 1,763 1,365 1,365 0,367 0,366 0,367 0,369 0,369 0,369 0,369 0,369 0,369 0,369 0,369

0.099 0.839 0.839 0.859 0.859 1.719 1.079 0.958 0.958

0.779 0.728 0.726 0.726 0.726 0.726 0.726 0.729 0.620 0.616

0.000 0.777 0.796 0.797 0.796 0.797 0.795

5.3. SWEA, LVPS Trending Data

SWEA FM1 Performance Trend (incl SWEA/STE-DLVPS)

			CAME A	IGM/EAM	RINEAD	Buch	Delevante					INNIEACT	ISWEAV0	INNEAND		ISMEADA	INVEA DA	0		
Date	File	Test	Temp	CPTemp	ACTemp	Voltage	Current	2.51/	SVD	SVA	12VA	EDCur	DAC=128	5VEANK	al	fit fit	fi2	Door?	MCP On2	
oare	Tile	EMI Boom IST with SIMEA	Tento	or remp	Hotemp	renage	ounem	2104	040	ant	12111	Loon	0110-180				116	00011	wher our	-
Oct 8 2004	O410080933.flm	(shield added)	30.7	31.9	32.8	28	142	2.50	4.99	5.36	12.14	17	-12.49	6.60	66.26	158.60	94.30	Yes	No	
Oct 16 2004	0410160000a.ilm	FM1 Suite I&T @ Caltech	30.9	31,9	32.9	28	140	2.50	4.99	5.37	12,16	17.3	-12.49	6.6	66.3	158	93	No	No	
Nov 3 2004	O411031363.llm	at UCB	30.4	31.6	32.7	28	139.5	2.50	4.99	5.36	12.14	14.8	-12.49	6.62	66	167.8	93.6	No	No	No.1.M
Dec 8 2004	C412081450 Ilm	FMI SWEA pre-Thermal				20	130	2.50	4.99	5,34	12.10									Ecoble
Dec 0 2004	041200140010	Balance	23.1	23	25.2	35	139	2.50	4.99	5.33	12.04	15.8						No	No	Plug
Dec 10 2004	0412101830.flm	FM1 SWEA pre-Thermal				20	130	2.50	4.99	5.34	12.10									
	- officient and	Balance	23.1	23	25.2	35	139	2.50	4.99	5.33	12.04	15.8	-12.52	6.6	67.1	160.3	96	Yes	Yee	
Jan 26 2005	0501270000 flm	EM1 SWEA Pre-vib				24	155	2.50	4.99	5.37	12.22									
0.000 2.0000	0001210000 1111	i mi oneriti io ne		29,4	31.8	35	140	2.50	4.99	5.36	12.10	16.1	-12.48	6.6	65.8	167.8	93.5	Yes	No	Lust File
Jan 28 2005	0501290105.tlm	FM1 SWEA Post-vib	21.8	20.7	22.9	28	138					14.6	-12.49	6.55	66.26	157 B	93.5	No	No	Lost File
						28	150.6	2.50	4.99	5.05	11.40									
Feb 4 2005	0502040000 flm	FMI SWEA Type Hot #2				24	290	2.50	4.99	5.56	12.70									
			37.4	33.6	39.4	35	150.5	2.50	4.99	5.38	12.17	16.7	-12.48	6.73	65.8	156.9	92.6	Yes	Yee	
						28	134	2.50	4.99	5.05	11.36									
Feb 4 2005	C502040000 Ilm	FM1 SWEA Tyac Cold #2		0.0.0		24	132	2.50	4.98	5.04	11.35	1222	10.00	0.07	200	4.000 10		23.07	1270	
			-38.4	-38.6	-36.9	35	133	2.50	4.98	5.03	11.30	14.5	-12.57	6.37	68.8	162.8	96.6	No	Yes	
Feb 5 2005	0602060000 film	FMT SWEA I VIC HOL #J	36.9	34.9	39.1	28	166	2.50	4.99	5.40	12.20	15.6	-12.49	6.13	65.8	166.9	93.5	No	Yes	
Feb 7 2005	OSC20B0000 fim	FM1 SWEA IVac Cold R3	-38.5	-41.8	-37.5	28	125.2	2.50	4.99	5.06	11.40	14.8	-12.55	6.36	68.8	163.7	99.4	No	Ves	
Feb 8 2005	Ceczeeccco tim	FMI SWEA IVac Hot #4	40.5	44.1	43.1	20	101	250	4.99	5.30	12.20	14.9	-12.48	0.14	60.8	106,9	92.6	NO	105	
Feb 8 2005	OSC/CBUCCO IIm	FMT SWEATVBC Cold #4	-41.6	-24.8	-36.4	28	1251.5	2.50	4.98	5.08	11.40	10.0	-12.55	0.13	66.6	16.3.7	00.5	NO	Yes	
Feb 9 2005	050205000001111	EMI SINEA Trac Cold #5	37.4	37.2	49.1	20	100	2.50	4.80	5.37	12.15	10.0	-1248	0.14	0.00	101.0	85.5	NO	108	
Feb 10 2005	0502090000 film	FIM SINEA THRE Gold Ha	-40.1	-33.4	-30.4	20	140	2.50	4.90	5.00	12.42	16.7	-12.07	6.13	65.8	167.8	02.5	No	Yee	
Feb 10 2005	05021000001111	ENI SWEATHE Cold #2	20.2	24.9	39.4	20	4.9.0	2.50	4.80	5.00	14 45	14.8	12.10	0.13	60.0	162.0	00.0	b.	Ves	
100 10 2005	0002100000100	F KH SWER TVac Cold Ho	-39.3	-204.0	-00.4	20	14.0	2.50	4.00	5.10	42.42	14.0	-12.00	9.17	00.0	102.2	90.06	T4D	100	
Eeb:10.2005	05021000001lim	FIM SINEA Type Hot #7				24	280	2.50	4.00	5.30	12.07									147mA of
1 60 10 2000	00021000000	THE STER PROTOCOL	35.9	70.0	30	25	14.9	2.50	4.00	5.36	12.07	14.7	12.49	6.71	65 B	166.9	9/2 E	Ma	Voe	Letter of the
			and set	1000.000	1000	28	125	2.50	4 9 9	5.05	11 36	Carlos .	- 14- Th	0.0	Selected	Tardad and	104-14		1.000	
Feb 11 2005	C502110000 flm	EM1 SWEA Tyac Cold #7				24	125.2	2.50	4.98	5.04	11.39									
140 11 2005			-36.3	-38.8	-35.6	35	141.8	2.50	4.98	5.04	11.34	14.7	-12.55	6.36	68.8	163.7	99.4	No	Yes	

6. TQCM Data

A bakeout was added to the end of the thermal vac cycling using a TQCM monitor to verify the outgassing rate meets the requirement (2.5E-11 g/cm2/sec). A final outgassing rate of \sim 40Hz/hour was measured, which is about the background rate of the chamber.

