STEREO *IMPACT*

FM1 IDPU Thermal Vacuum Test Report

IMPACT-IDPU-FM1-TVac-Report.doc Version B – 2005-Feb-28

David Curtis, UCB IMPACT Project Manager

Document Revision Record

Rev.	Date	Description of Change	Approved By
A	2005-Feb-22	Preliminary Draft	-
В	2005-Feb-28	Editorial changes, add TQCM criteria	-

Distribution List

Dave Curtis, UCB Jeremy McCauley, UCB Lil Richenthal, GSFC

	Table of Contents	
Document Rev	vision Record	i
Distribution L	.ist	i
1. Overview	7	1
1.1.	Introduction	1
1.2.	Applicable Documents	1
2. Test Setu	ייין מ	2
3. Test Hist	9rv	2
3.1.	First Run	2
3.2.	Second Run	3
4. Tempera	ture Profile	4
5. Trending		6
5.1.	Trending Data Explanation	6
5.2.	STE-U Trending Data	7
5.3.	MAG Trending Data	9
5.4.	IDPU Trending Data	10
6. TQCM D	Data	11

Table of Contents

1. Overview

1.1. Introduction

The Instrument Data Processing Unit (IDPU) is the part of the STEREO IMPACT instrument suite. It resides inside the spacecraft, hard-mounted (conductively coupled) to the deck.

This document describes the results of the thermal vacuum testing performed on the FM1 IDPU unit. This testing was performed at U.C. Berkeley following the test procedure called out in reference 1. There was no thermal balance test performed on the IDPU, as called out in reference 2.

The IDPU FM1 has satisfactorily completed its thermal vacuum test program and has met all of its requirements spelled out in reference 1 and 2.

1.2. Applicable Documents

The following documents are closely interrelated with this specification. All documents can be found on the Berkeley STEREO/IMPACT FTP site unless otherwise indicated:

http://sprg.ssl.berkeley.edu/impact/dwc/

- 1. IMPACT IDPU TVAC TEST PLAN
- 2. APL Document APL 7381-9003 Rev A STEREO Environment Definition, Observatory and Instrument (on APL web site)
- 3. IMACT-IDPU-CPT

Fig 1. FM1 and FM2 IDPU

2. Test Setup

The "Jeffrey" thermal vacuum chamber at U.C. Berkeley was used for the first part of the thermal vac of the IDPU. This is the chamber built for the IMPACT Boom thermal vacuum tests. Later the test was moved to the smaller SNOUT chamber to allow Jeffrey to be used for the SWEA Thermal Balance tests. Final outgassing certification was completed in Jeffrey, since SNOUT is not certified for that purpose.

The FM1 boom, including the FM1 MAG and STE-U instruments were setup outside the chamber. SEP, SWEA, and PLASTIC were simulated by GSE (ISG).

In addition to chamber monitoring TCs (on the baseplate, cold plate, and shrouds), a number of chamber TCs were attached to the exterior of the instrument to monitor the temperature. These instrument-mounted TCs were used to determine when temperature soaks were met. The one internal temperature sensor tended to run 10-15C warmer when the instrument was powered due to power dissipation in the unit.

3. Test History

3.1. First Run

This test was first attempted starting on 2004-November-19, following vibration testing of the IDPU. Following a ~72 hour +60C bakeout / non op hot cycle, the instrument was transitioned to non-op cold. After non-op cold soak the instrument was cycled to operational warm temperature. During the first operational hot and cold soaks the instrument was powered up and passed CPT. However at both hot and cold soak the instrument failed to start up properly below a bus voltage of 26V (requirement is 24V). The test was aborted and the unit was removed from the chamber for diagnostics (see PFR 1027). The problem was diagnosed as a failed diode in the soft-start circuit of the power converter. The part was replaced and testing resumed. Project agreed to allow us to continue from the place we left off (start of cycle 3), rather than starting from scratch.

The instrument was again baked out at non-op temperature levels for ~100 hours (over Thanksgiving weekend). The first operational cycle (cycle 3) we repeated cold-start at the hot and cold plateaus and had no trouble starting at down to 24V. Cycles 3,4,5 were completed successfully (with CPTs at each plateau).

After cycle 5 it was decided that the diode we replaced should have been replaced with a part from a newer lot date code. One theory for why the part failed is because it was from an older lot date code and there was no proof that the supplier had re-screened the part. It was decided to abort thermal vac again, replace the diode again, and then complete the last 2 cycles. Note that a workmanship vibration was also completed prior to putting the IDPU back in the chamber. At this time SWEA was ready to start thermal balance testing, which needed the Jeffrey chamber, and the Snout chamber had become available, so Snout was used for the last 2 cycles.

The IDPU was mounted in Snout and baked out for another ~48 hours. The last 2 cycles were complete successfully (with CPTs at each plateau), with cold starts being demonstrated hot and cold on the last cycle. This testing finished on 2004-December-22.

3.2. Second Run

A problem was discovered during the last thermal vac cycle of the FM2 IDPU (PFR 1032) which was determined to be caused by a reverse-biased tantalum capacitor in the power converter. It was determined that the FM1 IDPU also had this reverse-biased capacitor. The capacitor in both units was replaced so that it was correctly biased. FM1 IDPU then returned for 4 more cycles of thermal vac in the SNOUT chamber.

Starting on 2005-January-21 the IDPU was baked out at non-op hot for 72 hours. The unit was then cycled 4 times with CPTs at each plateau and cold start demonstrated at hot and cold of the first and last cycles at high and low bus voltage limits. The test completed 2005-February-1.

Following this second thermal vac run the unit complete a workmanship vibration and passed the subsequent CPT test. The unit then went back into the Jeffrey chamber for bakeout certification (see below)

4. Temperature Profile

IDPU Top is a chamber thermocouple taped to the top of the IDPU. Conn Face is a chamber TC taped to the connector face of the IDPU. ISTEUDACTemp is an instrument thermistor mounted to the STE-U interface board in the IDPU.

STEREO IMPACT FM1 IDPU Thermal Vac, Cycles 6,7

STEREO IMPACT IDPU Thermal Vac #2

5. Trending

5.1. Trending Data Explanation

The trending data on the previous pages is extracted from the trending file for the STE-U and Magnetometer instruments, plus the IDPU power trend. It is composed of values measured during the CPT, either directly, or from a post-processing fitting function which evaluates the data collected.

- The Door Open and Door Close columns show two times; from application of power to the time when the door comes off the first switch (starts moving), and the time from the application of power to the time when the door reaches the destination switch.
- Threshold values are DAC levels, corresponding to ~100eV per step. Requirement is <5keV.
- The test pulser fit data measures the electronic performance. Of particular interest is the FWHM, which measures the electronic noise in the system. Other values can be used to look for thermal drift and other trends in energy gain and offset.
- The "door source" fit data measures the calibration source on the STE door, and so is a end-to-end measurement (albeit using mostly photons rather than electrons). Again the FWHM is of interest (requirement < 2keV).
- Magnetometer RMS data is mostly influenced by noise sources in the vicinity of the sensor during the test (pretty bad in the clean room and close to the Jeffrey chamber, not so bad close to the Snout chamber)
- The IFC (In-Flight Calibration) data are parameters from a fit to the transition from IFC off to IFC on. This includes the measured amplitude of the stimulation (should be stable to a few percent), the relative timing (important for correlation of data timing with SWAVES, should be good to a few milliseconds), and the decay time of the signal (which indicates how the front end filtering is working; the fit is not great because only a few data points are taken during the transition).
- IDPU trends show the primary current (data logger) and secondary voltages (instrument housekeeping). There was a significant decrease in the instrument current when the soft start circuit was fixed. No other significant trends.

5.2. STE-U Trending Data

STE-U FM1	Performance	Trand

							Deer						1	Test Pulsor Door Source						100	Long Integration Door Source (Door LUT)									
			STE-U	Premap	IDPU	ISTEUCur	Open	Close					Offset	Gain	Curv.	Test	FWHM	Offset	Gain	n Curv.			SALATON.	AccTime	Offset	Gain Curv				
Date	File	Test	Temp	Temp	Temp	(mA)	(sec)	(SOC)	Blas	Fit Rev	Det.	Thresh.	(keV)	(koWBin)	(1/ks V)	Gain	{keV}	{keV}	(keWB	ān) (1/koV)	6keV c/s 2	2 keV c/s	FWHN	(500)	(koV)	(keWBin) (1/ke1	/) 6keVo	:/s 22keV o	i's SäkeV ci's	FWHM
		FM1 IDPU post vib									1		-0.02	0.3847	1.32E-04	13,9501	0.820	-0.04	0.38	891 66-5 (F)	41.24	21.96	0.953	0002600	-0.03	0.3879 1.11E	04 37	17 21.	20 3.91E-03	0.929
18-Nov-04	0411181B04.5m	CPT (with FM1 boom,	22		27.4	19	0.38 / 0.38	0.38/0.50		12/6/2004	1 8		-0.00	0.3837	1.48E-04	12 8552	0.797	-0.00	0.38	008 66-5 (F)	33.41	19.87	D.877	680	-0.07	0.3004 7.66E	05 32	26 18	44 1.00E-02	2 0.988
		STE-U; no SWEA)									. 3	1 1	-0.04	0.3842	1.31E-04	13.6208	0.794	-0.64	0.39	046 6e-5 (F)	33.18	20.40	0.902		-0.04	0.3947 6e-5 (F	31	.B3 18.	36 7.96E-03	0.894
80												1 1	-0.04	0.383.9	1.37E-04	13.5813	0.986	-0.11	0.38	896 Ge-5 (F)	36.21	20.51	1.077		-0.11	0.3902 3.69E	06 33	(13 19,	17 1.10E-02	2 1.063
22-Nov-041	0411221349.8m	FM1 IDPU Type Hot#2	25.2		54.0	16	0.38/0.38	0.25/0.38		12/9/2004	· 3	1 5	-0.06	0.3833	1.56E-04	12,9290	0.992	-0.16	0.38	846 6e-5 (F)	35.51	20,33	1.046	630	-0.17	0.3849 3.73E	05 32	18	\$3 B.87E-03	1.066
			10000		1000	0.022.0					1 23	2 10	-0.01	0.3834	1.63E-04	12.9943	0.870	-0.11	0.38	892 Ge-5 (F)	32.13	18.34	D.953	0.000	-0.11	0.3892 5.90E	05 29	40 17	38 4.61E-03	0.949
												1 17	-0.01	0.383/	1.45E-04	13.3639	0.8/5	-0.06	0.38	044.66-5 (F)	31.2/	16.49	1.040		-0.06	0.3944 69-5 [F	24	122 17.	10 7 MSE-03	1 0.964
		FM1 FIPIL Type Cold									1 2	1 11	-0.20	0.3056	1 27E-00	13 13 37	0.982	-0.10	0.38	845 66.5 (F)	34 94	20.35	1.034		-0.14	0.3843 5.955	05 32	49. 19.	58 1 81E-03	2 1014
22-Nov-04	0411221349.5m	#2	31.4		-33.3	24.3	0.38 (0.38	0.25/0.38		12/6/2004	1 83	2 1	-0.18	0.3954	1.27E-04	12 6973	0.850	-0.16	030	913 6e-5 (F)	31.00	18.03	0.924	610	-0.18	0.3919 6e-5 (F)	28	B9 17	04 2 26E-03	6 0.929
											. 8	1 1	-0.17	0.3962	1.06E-04	13.6374	0.859	-0.15	0.39	035 6e-5 (F)	31.07	17.93	0.950		-0.15	0.3030 6.79E	05 28	156 16.	/6 1.18E-02	0.951
22. menodos	ana ana ana ana	and a second second second			2007	15251	000000	2.6-2.012240		and the second	1 13	1 5	0.00	0.383.9	1.43E-04	13.5300	0.914	-0.03	0.38	887 Ge-5 (F)	38.26	21.76	D.984	Street a	-0.04	0.3886 8.04E	06 38	36 20.	49 6.41E-03	6.997
29-Nov-04	0411290000.1m	FM1 IDPU Type Hot#3	19		64.2	12	0.38/0.50	0.38/0.38		12/6/2004	1 B	1 1	0.01	0.3835	1.64E-04	12.9117	0.911	-0.08	0.38	833 6e-5 (F)	39.05	22.31	D.954	830	-0.0B	0.3833 6.60E	05 35	29 193	4B 124E-02	0.939
										A-33756558	1.1.1		0.04	0.3835	1.70E-04	12,5880	0.820	-0.05	0.38	890 66-5 (F)	33.44	20.22	0.890	100000	-0.07	0.3883 4.455	05 31	.03 18.	18 7.60E-03	0.000
												1 1	0.00	0.3854	1.53E-04	13,3168	1.165	-0.02	0.38	041 66-6 (F)	23.29	16.06	0.075		-0.01	0.3/08 7.745	05 30	20 30	13 1 AFE-02	0.930
100 A 100	47.29.20.20.20.20.20.20.20.20.20.20.20.20.20.	FW1 EIPH Two Cold	122.23		3:33	633	2133333	52.Wiltis		0.0000333	1 3	1 15	.0.10	0.3059	1.30F-04	13 1012	1319	-0.15 JJ 15	0.38	Bill Se.5 (F)	38.03	21.63	0.957	1988	.0.12	0.3842 Ro.5 (F)	35	63. 10	13 4 435.02	1 938
29-Nov-04	0411290000.1m	#3	25.9		-27.9	26	0.38 / 0.38	0.25/0.38		12/6/2004	1 3	2 13	-0.16	0.3952	1.31E-04	12.6080	1.003	-0.18	0.39	922 6e-5 (F)	32.47	19.12	0.897	750	-0.15	0.3914 6.72E	05 30	56 17	39 1.63E-07	0.902
											81	3 10	-0.18	0.3956	1.07E-04	13,5956	1.214	-0.13	0.39	032 6e-5 (F)	32.52	19.95	0.916		-0.13	0.3934 Be-5 (F)	30	175 17	52 7.17E-03	0.916
14. 		and a state of the state of									÷ 10	1 1	-8.02	0.383B	1.37E-04	13 5270	0.892	-0.05	0.38	893 Ge-5 (F)	37.99	21.B4	0.962	18	-0.05	0.3800 6.53E	05 38	134 20.	56 1.08E-02	0.974
30.Nov.04	0411300000 fm	FIUT IDPU Type Hot #4	23		64.7	143	0.38/0.38	0.25/0.38		12/6/2004	1 - 53	1 1	-0.01	0.3837	1.60E-04	12.9167	0.895	-0.07	0.38	834 6e-5 (F)	38.43	21.76	0.963	1750	-0.0B	0.3833 6.94E	05 35	37 193	5B B.63E-03	0.942
20-001-01		THE BULL PROPERTY				14.4	9.2019.20	0.2210.22		120 01 20004	1.1.1	2 8	0.03	0.3834	1.68E-04	12.5836	0.820	-0.06	0.38	890 Ge-5 (F)	33.34	19.23	D. 891		-0.07	0.3889 6.03E	05 30	BO 17.	J0 8.73E-03	0.989
												3 8	0.03	B.3835	1.53E-04	13.3323	0.822	-0.01	0.39	038 66-5 (F)	33.98	18.90	0.928		-0.02	0.3943 5.425	05 30	98 17.	A6 8.63E-03	0.911
		FULL FIPIL Type Cold								00306322	i (8	1	.0.16	0.3850	1 275.04	13 0963	1.025	-0.12	0.38	B41 Ba.5 (F)	37 73	20.86	0.960	180.88	_0.12	0.3940 7.545	06 34	150 10	40 0.955.02	0.966
30-Nov-04	0411300000.5m	24	26.6		-20.7	25.1	0.38/0.38	0.25/0.38		12/6/2004	1 23	2 12	-0.14	0.3855	1.31E-04	12,6960	0.875	-0.13	0.39	910 6e-5 (F)	33.01	10.10	0.917	1400	-0.14	0.3913 6.44E	06 30	29 17.	38 1.51E-07	2 0.907
							1. 1					1 1	-0.15	0.3855	1.12E-04	13.5794	0.850	-0.12	0.39	935 6e-5 (F)	32.80	19.47	0.932		-0.12	0.3933 6e-5 (F	30	40 17.	43 1.11E-02	2 0.919
											a - 69	10 N	-0.03	0.3842	1.40E-04	13.5712	1,012	-0.06	0.38	892 6e-5 (F)	38.99	22.24	D. 981	51	-0.07	0.3888 5.29E	06 38	14 20.	2 6.83E-03	0.993
1.Dar.M	0412030000 8m	FULL INPUT Your Hot #5	24.3		65	143	0.38/0.38	0.25/0.38		12/9/2004	1 18	1 1	-0.06	0.3834	1.59E-04	12.9229	1.123	-0.09	0.38	834 6e-5 (F)	40.53	20.93	D.959	610	-0.09	0.3835 6.625	06 34	195 193	72 1.22E-02	0.960
										Tax so a veser	- 83	2 6	0.01	0.3837	1.64E-04	12.5902	0.913	-0.07	0.38	898 6e-5 (F)	33.73	1B.B1	D.91D	<u> </u>	-0.0B	0.3886 3.65E	05 30	150 17.	41 6.14E-03	0.907
<i></i>												1 1	-0.02	0.3840	1.46E-04	13.3490	0.859	-0.02	0.39	043 66-5 (F)	32.05	19.61	0.921		-0.02	0.3942 69-5 F	31.	.99 17.	26 6.90E-03	0.907
100000000		FULL IT FILL Type Cold						101232922		100000	1 13	1	-0.14	0.3836	1.08E-04	13.0504	1.024	-0.12	0.38	B4R Ga.5 (F)	35.03	21.29	0.996	10025	-0.11	0.3844 6145	06 34	194 190	45 1 126-02	2 0.970
1-Dat-04	0412010000.1m	#5	26.5		-13	24	0.38/0.38	0.25/0.38		12/6/2004	1 83	2 10	-0.13	0.3855	1.33E-04	12,6023	0.895	-0.13	0.30	913 6e-5 (F)	33.52	18.70	0.921	1670	-0.14	0.3015 5.56E	06 30	44 17.	83 1.53E-07	2 0.915
												1 1	-0.16	0.3853	1.12E-04	13.5502	0.893	-0.12	0.39	937 6e-5 (F)	31.99	19.58	D.915		-0.11	0.3033 6e-5 (F	30	84 17	4B 4.52E-03	0.924
24 											. 33	1 1	-0.04	0.3844	1.39E-04	12,7705	0.823	-0.12	0.39	902 6e-5 (F)	42.57	22.56	D.929	2	-0.11	0.3905 4.965	06 38	14 20	A 1.15E-02	0.918
17-Dac-04	0412171330.fm	FM1 IDPU Post-	19.1		24.4	20.3	0.38/0.50	0.38 / 0.38	150	12/6/2004	1 88	1 11	-0.01	0.3854	1.60E-04	12.3499	1,054	-0.12	0.38	859 Ge-5 (F)	40.41	21.89	1.086	1840	-0.11	0.3856 6.41E	06 36	B5 20.	28 7.35E-03	1.086
		workmanship vib CPT								222326	(- 33	2 10	-0.01	0.3968	1.56E-04	12.3219	0.974	-0.10	0.39	911 66-5 (F)	31.52	18.71	1.051	0.000	-0.10	0.3916 5.08E	06 31	.29 18.	12 B 54E-03	1.032
												1 10	NO TE.	0.9940	1.535.04	10,0070	09.49	-0.07	0.39	012 Ext 5 / E	25.31	20.17	0.865	22 22	-0.09	0.3063 69-5 (P	A 32	42 18.	27 9 UNE-03	0.856
										100000	1 33	1 10	0.04	0.3960	1.71E-04	12 3336	1.034	-0.05	0.38	846 64-5 (F)	40.78	22.04	1.057	142.25	-0.08	0.3839 7.615	06 37	47 20	SE 1.30E-02	2 1066
20-Dec-04	0412201426.1m	FIM1 IDPU Type Hot#6	16		58.2	16	0.50/0.50	0.38/0.38	150	12/6/2004	1 53	2 1	0.06	0.3968	1.75E-04	12,3155	0.970	-0.04	0.38	891 64-5 (F)	34.37	18.06	1.031	820	-0.05	0.3804 6.42E	06 31	.90 18	36 1.16E-07	2 1.029
29 29	- 220111 - SALP WOODEP914					73.177	2020100000	00/2020/00/00/07	11111	Service 10	1 8	1 1	0.05	0.3843	1.61E-04	12.5775	0.780	-0.04	0.38	851 64-5 (F)	35.17	19.74	D. BG 7	St.	-0.04	0.3953 6e-5 (F	33	16 18.	17 B.87E-03	0.871
												J 6	-0.11	0.3857	1.18E-04	12.8987	0.799	-0.14	0.38	896 Ge-5 (F)	41.10	21.61	0.B75		-0.14	0.3884 5.29E	06 38	159 20	31 9.39E-03	198.0
20-Dec-04	0412201426.fm	FM1 IDPU Type Cold	17		-15.9	247	0.38/0.50	0.38/0.38	150	12/6/2004	1 - 33	1 10	-0.0E	0.3848	1.43E-04	12.37B4	0.948	-0.14	0.38	858 64-5 (F)	41.04	22.13	D.997	1710	-0.12	0.3852 7.65E	06 37	76 20	JB 1.18E-02	1 0.939
		\$9								201203	1 8	2 10	-0.00	0.3963	1.39E-04	12.3242	0.964	-0.15	0.39	028 64-5 (F)	35.30	19.70	D.964	323	-0.13	0.3922 Be-5 (F	31	.90 18/	12 9.50E-03	0.924
-														0.3856	1.55E-04	12.6214	0.930	-0.12	0.38	011 6a.5 /E)	10.95	20.30	0.043	-	-0.12	0.3951 0.190	05 33	80 21	13 1.15E-02	0.044
10000						10272	2020203	0002712221			. 82	10 1	0.07	0.3859	1.79E-04	12 3334	0.830	-0.08	0.38	840 6e-5 (F)	41.05	21.94	0.912	100.03	-0.07	8.3841 6.04E	05 37	85 20	33 1.18E-07	2 0.901
21-Dec-04	0412210000.1m	FM1 IDPU TVac Hot#7	15.2		69.6	13.4	0.50/0.50	0.38 / 0.50	150	12/6/2004		2 8	0.00	0.3912	1.82E-04	12,4604	0.7B3	-0.03	0.38	890 Ge-5 (F)	35.07	19.29	D. 87 8	1610	-0.04	0.3804 5.24E	05 31	.BB 18.	26 1.42E-07	0.863
al an			0.050		102215	108/06	a costa (il	severe tarib	1000	- 10 C 3 C 4 C - 2	1 13	1 6	0.07	0.3835	1.68E-04	12.5423	0.757	-0.02	0.38	151 6a-5 (F)	35.93	19.71	D.855	1	-0.02	0.3951 6e-5 (F	32	67 18.	44 1.20E-02	0.857
) 6	-0.12	0.3851	1.20E-04	12.B650	0.793	-0.13	0.38	890 Ge-5 (F)	41.45	22.17	D. B77		-0.14	0.3808 4.22E	05 38	24 20.	st 1.20E-02	0.879
21-Dec-04	0412210000.1m	FM1 IDPU Type Cold	19.7		-75	23.1	0.38/0.50	0.38 /0.38	150	12/6/2004	1 (3	1 1	-0.07	0.3847	1.46E-04	12.3737	0.785	-0.13	0.38	856 Ge-5 (F)	39.83	21.35	D. 89.3	1550	-0.13	0.3859 5.22E	05 37	.52 20	M 1.01E-02	0,865
		#7				1000			1.52	111111	1	2 6	-0.08	0.3963	1.43E-04	12.3290	0.755	-0.13	0.39	022 68-5 (F)	34.00	19.41	D. 85 D	1.012	-0.12	0.37721 6e-5 (F)	31	.70 17	/0 1.15E-02	0.854
15											·	1 1	-0.11	0.3857	1.29E-04	12./561	0.760	-0.14	0.39	uau 69-a (F)	35.62	20.41	0.665	10	-0.12	u. 35/48 89-5 (F	- 32	45 18.	10 1 225-02	0.848

STEREO IMPACT FM1 IDPU Tvac Report IMPACT-IDPU-FM1-TVac-Report-B.doc

STE-U FM1 Parformance Trand

and a set of the loss	And the second second												Test Pulser Door Source					1	Long Integration Door Source (Door LUT)												
Date	File	Test	STE-U Tomp	Premap Temp	IDPU Temp	ISTEUCur (mA)	Door Open (sec)	Door Close (sec)	Blas	Fit Rov	Det.	Thresh	Offset (keV)	Gain (keWBin)	Curv. (1/keV)	Test Gain	FWHN (koV)	Offset (keV)	Gain (keWBin)	Curv. (1/keV)	6keV a/s 2	2keV o/s	FWHN	AccTine (sec)	Offset (keV)	Gain (koWBin)	Curv. (1/keV)	6keV c/s 22	koV c/s &8kk	eV c/s	FWHN
24-Jan-05	0501240958.tim	FM1 IDPU Twae #2 Hot #1	15.7		61.1	12.6	0.50/0.5	0 0.38/0.38	20	12/6/2004		0 1 2 3	9 0.00 8 0.09 8 0.07 8 0.07	0.3840 0.3858 0.3939 0.3830	1.53E-04 1.79E-04 1.79E-04 1.67E-04	12.6792 12.3359 12.5464 12.5442	D. 893 D. 828 D. 808 D. 792	-0.06 -0.08 -0.04 -0.04	0.3896 0.3843 0.3896 0.3950	84-5 (F) 84-5 (F) 84-5 (F) 84-5 (F)	41.17 40.02 33.75 34.69	21.35 20.26 18.06 18.68	0.950 0.897 0.875 0.861	1230	-0.06 -0.07 -0.04 -0.04	0.3899 0.3836 0.3889 0.3950 6	5.86E-05 7.10E-05 6.66E-05 9-5 (F)	38.28 37.11 31.53 32.31	19.92 14 19.08 1.6 17.02 7.2 17.33 8.4	1E-02 0E-02 3E-03 6E-03	0.958 0.887 0.860 0.883
24-Jan-05	0501240956.tlm	FM1 IDPU Tvaic #2 Cold #1	19.6		-14.2	24	0.50/0.5	0 0.38/0.38	150	12/6/2004		0 1 2 3	9 -0.11 9 -0.06 8 -0.06 8 -0.10	0.3856 0.3846 0.3861 0.3856	1.19E-04 1.47E-04 1.43E-04 1.25E-04	12.8998 12.3789 12.3268 12.7604	D. 836 D. 828 D. 776 D. 799	-0.15 -0.15 -0.12 -0.14	0.3890 0.3855 0.3917 0.3947	64-5 (F) 64-5 (F) 64-5 (F) 64-5 (F)	30.65 40.45 33.21 33.85	21.75 20.66 17.70 18.59	0.905 0.874 0.861 0.845	1390	-0.15 -0.14 -0.13 -0.13	0.3890 0.3858 0.3918 0.3944 6	5.77E-05 5.14E-05 6.24E-05 9-5 (F)	37.53 36.61 30.95 32.08	19.52 7.7 19.07 1.3 16.90 8.7 17.17 1.1	9E-03 6E-02 2E-03 5E-02	0.900 0.886 0.852 0.865
25-Jan-05	0501250000.tlm	FM1 IDPU Tvac #2 Hot #2	17-1		69.9	13.7	0.38/06	2 0.38/0.3B	150	12/6/2004		0 1 2 3	9 0.00 9 0.03 8 0.05 8 0.05	0.3935 0.3964 0.3946 0.3939	1.56E-04 1.74E-04 1.76E-04 1.66E-04	12.6439 12.3267 12.5445 12.5408	D. 692 D. 850 D. 818 D. 799	-0.05 -0.07 -0.05 -0.03	0.3807 0.3837 0.3888 0.3858	84-5 (F) 84-5 (F) 84-5 (F) 84-5 (F)	30.63 30.61 33.47 34.78	20 A1 21 37 18.95 19.02	0.965 0.893 0.859 0.913	1380	-0.07 -0.08 -0.04 -0.05	0.3901 0.3939 0.3983 0.3950 6	4.96E-05 5.60E-05 7.62E-05 9-5.(F)	37.99 38.72 30.98 32.39	19.87 1.1 19.03 1.4 17.11 9.2 17.38 1.2	3E-02 0E-02 4E-03 3E-02	0.955 0.800 0.867 0.900
25-Jan-05	0501250000.tlm	FW1 IDPU Tvac #2 Cold #2	18.6		-6.6	23	0.3870.5	0.3870.38	20	12/6/2004		0 1 1 1 2 3	0 -0.11 0 -0.03 9 -0.06 9 -0.06	0.3853 0.3848 0.3848 0.3851	1.09E-04 1.37E-04 1.38E-04 1.20E-04	13.7576 13.0487 12.6508 13.5046	1.004 0.966 0.795 0.828	-0.04 -0.06 -0.10 -0.09	0.3878 0.3851 0.3913 0.3942	84-5 (F) 84-5 (F) 84-5 (F) 84-5 (F)	38.61 37.99 32.54 33.44	21.33 20.53 18.14 18.52	1.115 1.035 0.899 0.957	4080	-0.06 -0.06 -0.10 -0.08	0.3979 0.3946 0.3915 0.3939	6.21E-05 6.79E-05 6.57E-05 6.56E-05	36.13 35.56 30.74 31.22	19.41 1.3 19.07 1.3 16.96 1.2 17.26 1.2	4E-02 BE-02 4E-02 2E-02	1.083 1.023 0.882 0.932
28-Jan-05	0501260000.tim	FM1 IDPU Tvac #2 Hot #3	16.2		70.B	13.8	0.3870.6	2 0.3B/0.3B	20	12/6/2004		0 1 1 1 2 3	0 0.03 0 0.04 8 0.05 8 0.04	0.3838 0.3828 0.3829 0.3841	1.44E-04 1.63E-04 1.70E-04 1.53E-04	13.5307 12.8807 12.5463 13.3129	D. 998 D. 958 D. 816 D. 835	0.03 -0.03 -0.02 0.04	0.3887 0.3836 0.3887 0.3887	84-5 (F) 84-5 (F) 84-5 (F) 84-5 (F)	30.07 30.06 33.80 33.35	21.45 21.15 18.15 19.12	1.075 1.025 0.898 0.933	2030	0.04 0.01 -0.01 0.03	0.3884 0.3824 0.3882 0.3936	6.94E-05 7.82E-05 7.64E-05 8.40E-05	36.08 35.47 30.87 31.26	19.61 7.1 19.09 1.1 17.09 8.2 17.40 1.0	7E-03 3E-02 1E-03 BE-02	1.073 1.021 0.889 0.939
28-Jan-05	0501260000.tim	FW1 IDPU Tvac #2 Cold #3	1B		-10.4	23.5	0.50/0.5	0.3870.38	20	12/6/2004		0 1 1 1 2 3	0 -0.11 0 -0.00 8 -0.08 9 -0.10	0.3851 0.3846 0.3847 0.3857	1.11E-04 1.38E-04 1.38E-04 1.18E-04	13.7675 13.0538 12.6542 13.5374	0.998 0.990 0.900 0.900	-0.07 -0.13 -0.09 -0.07	0.3896 0.3884 0.3906 0.3920	84-5 (F) 84-5 (F) 84-5 (F) 84-5 (F)	39.16 38.33 32.88 33.68	21.23 19.46 18.71 18.91	1.054 0.997 0.893 0.925	870	-0.05 -0.07 -0.10 -0.09	0.3975 0.3944 B 0.3915 0.3942 6	7.39E-05 e-5 (F) 6.84E-05 e-5 (F)	35.92 35.58 30.58 31.27	19.42 1.3 18.91 4.4 17.09 1.3 17.36 1.3	0E-02 3E-03 3E-02 5E-02	1.057 1.008 0.880 0.920
29-Jan-05	0501290000.tim	FM1 IDPU Tvac #2 Hot #4	13.9		71.6	13.6	0.50/0.5	0 038/050	150	12/6/2004		0 1 2 3	9 0.04 8 0.07 8 0.06 8 0.06	0.3832 0.3858 0.3866 0.3866	1.60E-04 1.82E-04 1.82E-04 1.70E-04	12.6459 12.3318 12.3064 12.5327	D.861 D.817 D.795 D.793	-0.04 -0.05 -0.03 -0.02	0.3896 0.3836 0.3889 0.3851	64-5 (F) 64-5 (F) 64-5 (F) 64-5 (F)	40.66 40.08 33.43 34.79	21.14 21.35 17.74 18.57	0.941 0.875 0.849 0.895	37780	-0.05 -0.06 -0.04 -0.02	0.3898 0.3836 0.3886 0.3986	5.53E-05 6.39E-05 6.69E-05 6.79E-05	37.99 37.11 31.52 32.35	19.90 1.3 19.15 1.1 17.20 1.0 17.39 1.1	4E-02 5E-02 BE-02 6E-02	0.942 0.882 0.865 0.865
31-Jan-05	0501310000.tim	FIN1 IDPU Tvae #2 Cold #4	19.6		-22.5	25.2	0.50/0.5	0.38/0.38	150	12/6/2004		0 1 1 2 3	9 -0.14 9 -0.11 9 -0.11 9 -0.12	0.3956 0.3947 0.3962 0.3956	1.15E-04 1.42E-04 1.39E-04 1.22E-04	12.9040 12.3799 12.3245 12.7651	0.831 0.828 0.776 0.757	-0.16 -0.14 -0.16 -0.14	0.3888 0.3855 0.3926 0.3945	6a-5 (F) 6a-5 (F) 6a-5 (F) 6a-5 (F)	30.87 30.28 32.05 34.48	20.29 20.07 18.26 18.93	0.898 0.877 0.851 0.855	1720	-0.16 -0.15 -0.14 -0.14	0.3992 0.3961 0.3920 0.3946 6	4.73E-05 4.16E-05 6.29E-05 e-5 (F)	37.24 36.40 30.70 31.67	19.22 9.4 18.67 8.3 16.83 9.4 16.84 1.1	4E-03 1E-03 3E-03 4E-02	0.803 0.886 0.850 0.855
14-Feb-05	0502150000.tlm	FM1 IDPU posl-Wb	22.2		31.5	18.5	0.3870.5	0 0.38/0.38	20	12/6/2004		0 1 1 1 2 3	0 -0.13 1 -0.03 9 -0.05 9 -0.05	0.3848 0.3841 0.3839 0.3843	1.07E-04 1.43E-04 1.50E-04 1.32E-04	13.9535 13.2908 12.9068 13.7427	1.075 1.129 0.906 0.912	-0.04 -0.07 -0.08 -0.03	0.3995 0.3849 0.3913 0.3944	84-5 (F) 84-5 (F) 84-5 (F) 84-5 (F)	38.12 36.14 32.48 32.59	19.96 19.32 17.46 17.97	1.079 1.041 0.900 0.917	1520	-0.04 -0.05 -0.05 -0.03	0.3890 0.3843 0.3899 0.3945	7.35E-05 7.48E-05 7.27E-05 6.11E-05	34.70 34.66 30.00 30.18	18.50 1.2 18.23 1.2 16.20 5.5 16.60 1.0	4E-02 7E-02 7E-03 4E-02	1.075 1.034 0.894 0.942

5.3. MAG Trending Data

MAG FM1 Performance Trend

MAG FM1 Pe	offormance Trend									2								
			MAG	IDPU	Heater				IEC Eit	Sample	IFC X	2	Samolo	IFC Y		Sample	IFC Z	
Date	File	Test	Temp	Temp	On HKP	RMSx	RMSy	RMSz	Rev	Time	Amplitude	Rate	Time	Amplitude	Rate	Time	Amplitude	Rate
Nov 17 2004	0411171046.tlm	Pre IDPU Vib	22.8	Ambient	10.4	8.4	3.4	12.8	10/15/2004	-22.2	8905	8.3	-22.0	8799	9.0	-22.0	9283	9.3
Nov 18 2004	0411181804.tlm	Post IDPU Vib	22.6	Ambient	10.4	8.0	3.0	7.0	12/6/2004	-22.4	8908	9.0	-21.9	8801	9.0	-22.2	9281	9.4
Nov 22 2004	0411221349.tlm	IDPU Tvac Hot 2	22.5	54.9	12.2	11.0	9.0	9.0	12/6/2004	-12.1	8892	4.9	-21.8	8778	9.3	-21.5	9372	9.5
Nov 22 2004	0411221349.tlm	IDPU Tvac Cold 2	20.8	-33.3	7.7	16.0	10.0	9.0	12/6/2004	-24.6	8922	11.2	-14.2	8778	6.1	-20.7	9361	9.6
Nov 29 2004	0411290000.tlm	IDPU Tvac Hot 3	18.7	64.2	19.5	15.0	9.0	9.0	12/6/2004	-21.9	8892	9.3	-26.6	8789	11.3	-25.2	9370	10.9
Nov 29 2004	0411290000.tlm	IDPU Tvac Cold 3	20.5	-27.9	8.3	11.0	11.0	8.0	12/6/2004	-20.9	8875	10.1	-22.8	8776	10.1	-22.8	9355	10.1
Nov 30 2004	0411300000.tlm	IDPU Tvac Hot 4	18.5	64.7	14	16.0	11.0	8.0	12/6/2004	-21.9	8883	9.5	-20.8	8801	8.5	-21.2	9387	9.0
Nov 30 2004	0411300000.tlm	IDPU Tvac Cold 4	19.8	-20.7	8.1	13.0	10.0	8.0	12/6/2004	-20.4	8894	9.2	-23.5	8783	10.8	-26.2	9365	12.5
Dec 1 2004	0412010000.tlm	IDPU Tvac Hot 5	19	65	13.6	12.0	8.0	10.0	12/6/2004	-22.4	8884	9.7	-22.0	8783	9.1	-23.1	9374	9.9
Dec 1 2004	0412010000.tlm	IDPU Tvac Cold 5	19.7	-13	8.6	16.0	10.0	8.0	12/6/2004	-20.2	8883	9.1	-21.8	8784	10.0	-23.8	9360	11.0
Dec 17 2004	0412171330.tlm	IDPU post-vib	20.2	24	10.9	1.3	1.3	1.3	12/6/2004	-20.4	8884	8.7	-22.1	8769	9.7	-22.1	9353	9.9
Dec 20 2004	0412201426.tlm	IDPU Tvac Hot 6	17.2	58.2	13.6	2.3	2.2	1.9	12/6/2004	-22.0	8891	9.3	-21.6	8772	9.2	-21.6	9357	9.5
Dec 20 2004	0412201426.tlm	IDPU Tvac Cold 6	17.4	-15.9	8.6	1.4	1.0	1.0	12/6/2004	-21.4	8878	9.6	-22.6	8769	10.3	-22.9	9347	10.7
Dec 21 2004	0412210000.tlm	IDPU Tvac Hot 7	17.2	69.6	11.5	1.4	1.5	1.0	12/6/2004	-21.7	8892	9.1	-21.7	8774	9.1	-21.7	9359	9.4
Dec 21 2004	0412210000.tlm	IDPU Tvac Cold 7	19.4	-7.5	9.1	1.3	2.2	1.4	12/6/2004	-22.9	8881	10.4	-21.7	8768	9.8	-21.5	9349	9.9
Jan 24 2005	0501240956.tlm	IDPU Tvac2 Hot 1	17.3	61.1	11.1	1.5	1.4	1.0	12/6/2004	-21.1	8884	8.8	-21.7	8770	9.2	-22.0	9360	9.5
Jan 24 2005	0501240956.tlm	IDPU Tvac2 Cold 1	19.5	-14.2	8.6	1.6	4.0	2.1	12/6/2004	-23.1	8874	10.5	-21.4	8762	9.6	-22.1	9348	10.3
Jan 25 2005	0501250000.tlm	IDPU Tvac2 Hot 2	20.7	69.9	14.2	1.4	1.6	1.0	12/6/2004	-21.8	8883	9.2	-21.7	8769	9.1	-21.7	9360	9.4
Jan 25 2005	0501250000.tlm	IDPU Tvac2 Cold 2	20.2	-6.6	9.5	1.8	3.4	1.3	12/6/2004	-21.9	8875	9.9	-21.3	8765	9.6	-22.0	9349	10.2
Jan 26 2005	0501260000.tlm	IDPU Tvac2 Hot 3	20	70.8	14.3	1.5	3.1	1.2	12/6/2004	-22.1	8885	9.3	-21.9	8766	9.1	-22.1	9359	9.6
Jan 26 2005	0501260000.tlm	IDPU Tvac2 Cold 3	19.5	-10.4	9.3	1.5	3.0	1.2	12/6/2004	-22.8	8876	10.3	-21.9	8747	9.9	-22.2	9348	10.3
Jan 29 2005	0501290000.tlm	IDPU Tvac2 Hot 4	17.6	71.6	15	1.5	1.7	2.0	12/6/2004	-22.0	8885	9.3	-19.6	8767	8.1	-21.7	9360	9.3
Jan 31 2005	0501310000.tlm	IDPU Tvac2 Cold 4	19.5	-22.5	8.4	2.1	1.6	1.4	12/6/2004	-21.6	8869	9.7	-22.4	8760	10.2	-23.1	9348	10.8
Feb 14 2005	0502150000 tlm	IDPU Post-vib	22.9	31.5	10.6	6.8	2.5	64	12/6/2004	-22.5	8970	93	-22.9	8780	95	-22.2	9286	93

5.4. IDPU Trending Data

IDPU FM1 Performance Trend

Date	File	Test	S/W Version	IDPU Temp	Primary Current, mA	2.5V	5VD	5VA	12VA	STE-U?	
Oct 1 2004	0410011640.tlm	Boom I&T, less SWEA	24	Ambient	222	2.50	4.98	4.87	12.84	EM1	
Oct 16 2004	0410160000.tlm	Suite I&T, pre EMC	24	Ambient	238	2.48	4.98	4.86	12.81	FM1	
Nov 3 2004	0411031353.tlm	Post EMC @ UCB	24	Ambient	223	2.49	4.98	4.85	12.84	FM1	
Nov 17 2004	0411171046.tlm	Pre IDPU Vib	24	Ambient	215	2.49	4.98	4.86	12.85	FM1	
Nov 18 2004	0411181804.tlm	Post IDPU Vib	24	Ambient	216	2.49	4.98	4.86	12.86	FM1	
Nov 22 2004	0411221349.tlm	IDPU Tvac Hot 2	24	54.9	222	2.49	4.97	4.83	12.89	FM1	
Nov 22 2004	0411221349.tlm	IDPU Tvac Cold 2	24	-33.3	222	2.51	4.99	4.91	12.82	FM1	
Nov 29 2004	0411290000.tlm	IDPU Tvac Hot 3	24	64.2	196	2.49	4.97	4.82	12.90	FM1	Fix soft start
Nov 29 2004	0411290000.tlm	IDPU Tvac Cold 3	24	-27.9	194	2.51	4.99	4.91	12.81	FM1	
Nov 30 2004	0411300000.tlm	IDPU Tvac Hot 4	24	64.7	198	2.49	4.97	4.83	12.90	FM1	
Nov 30 2004	0411300000.tlm	IDPU Tvac Cold 4	24	-20.7	193	2.50	4.99	4.90	12.82	FM1	
Dec 1 2004	0412010000.tlm	IDPU Tvac Hot 5	24	65	199	2.49	4.97	4.82	12.90	FM1	
Dec 1 2004	0412010000.tlm	IDPU Tvac Cold 5	24	-13	193	2.50	4.99	4.90	12.82	FM1	
Dec 17 2004	0412171330.tlm	IDPU post-vib	24	24	190	2.49	4.98	4.86	12.84	FM1	
Dec 20 2004	0412201426.tlm	IDPU Tvac Hot 6	24	58.2	198	2.49	4.97	4.83	12.89	FM1	
Dec 20 2004	0412201426.tlm	IDPU Tvac Cold 6	24	-15.9	194	2.50	4.99	4.90	12.81	FM1	
Dec 21 2004	0412210000.tlm	IDPU Tvac Hot 7	24	69.6	197	2.49	4.97	4.82	12.87	FM1	
Dec 21 2004	0412210000.tlm	IDPU Tvac Cold 7	24	-7.5	196	2.50	4.99	4.89	12.81	FM1	
Jan 24 2005	0501240956.tlm	IDPU Tvac2 Hot 1	24	61.1	195	2.49	4.97	4.82	12.88	FM1	Fix reverse biased tantalum
Jan 24 2005	0501240956.tlm	IDPU Tvac2 Cold 1	24	-14.2	195	2.50	4.99	4.90	12.81	FM1	
Jan 25 2005	0501250000.tlm	IDPU Tvac2 Hot 2	24	69.9	200	2.49	4.97	4.82	12.88	FM1	
Jan 25 2005	0501250000.tlm	IDPU Tvac2 Cold 2	24	-6.6	201	2.50	4.99	4.89	12.80	FM1	
Jan 26 2005	0501260000.tlm	IDPU Tvac2 Hot 3	24	70.8	197	2.49	4.97	4.82	12.88	FM1	
Jan 26 2005	0501260000.tlm	IDPU Tvac2 Cold 3	24	-10.4	193	2.50	4.99	4.89	12.81	FM1	
Jan 29 2005	0501290000.tlm	IDPU Tvac2 Hot 4	24	71.6	196	2.49	4.97	4.82	12.88	FM1	
Jan 31 2005	0501310000.tlm	IDPU Tvac2 Cold 4	24	-22.5	195	2.51	4.99	4.90	12.80	FM1	
Feb 14 2005	0502150000.tlm	IDPU Post-vib	24	31.5	192	2.49	4.98	4.85	12.85	FM1	

6. TQCM Data

Both flight IDPU units were placed in the Jeffrey chamber together. They had both spent a considerable amount of time in bakeout during thermal vac, so all that was required was certification, which involves measuring the TQCM rates while the chamber control surfaces are held at non-op hot for the IDPU (60C). The measured TQCM rate was steady at 45Hz/hour, not significantly above chamber background. The corresponding calculated outgassing rate is 3.4E-13 g/cm^2/sec per unit, compared to a requirement of 5e-11.

