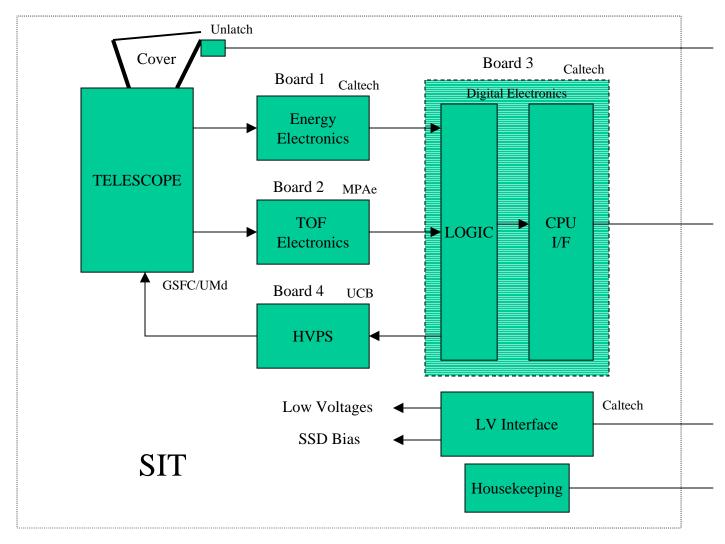
IMPACT TEAM MEETING

5/ 10-11 /00


SUPRATHERMAL ION TELESCOPE

SIT STATUS

SIT Development

- SIT consists of:
 - a telescope with sunshade and acoustic cover, a foil, SSD and MCPs
 - Energy, Time-of-Flight, Logic electronics, and a HVPS
 - an interconnecting harness
 - Structures to shield and support the above
- The SIT development concept is that:
 - GSFC will design, build and assemble the telescope based in part on existing UMd designs and parts
 - Caltech will design and build the energy and logic electronics based on UMd inputs
 - Caltech will provide the harness as part of the SEP harness, with inputs from UMd
 - MPAe will supply the time-of-flight electronics board
 - UCB will supply the HVPS
 - SIT will be housed in a common box as part of SEP which is being built by GSFC and Caltech
 - UMd will assemble SIT and provide SIT-level testing and calibration including SITlevel GSE
 - UMd will provide limited support of the integration of SIT into SEP and STEREO
 - It is assumed that most environmental testing will be done at the SEP level

SIT BLOCK DIAGRAM

SIT Status - Telescope

- Box and Internal Parts
 - Unit #1 use WIND/STEP spares from UMd
 - Unit #2 use spares as available plus build additional parts using existing designs
- Sunshade/Acoustic Cover
 - Design may be based on WIND/STEP
- Sensor Elements
 - Foils use WIND/STEP spares as available
 - SSD new flight SSDs to be procured by UMd
 - MCPs new flight MCPs to be procured by UMd

SIT Status - Electronics

- Energy Electronics (Board 1)
 - CSA Design available and submitted to Caltech
 - 2-ramp amplifier/HTC concept design with Caltech chip
 - Control Logic TBD
- TOF (Board 2)
 - Requirements submitted to MPAe
 - Digital Design MPAe will modify existing MPAe design
 - Fast amplifier is existing design available?
 - Discriminators is a CFD required?

SIT Status - Electronics (cont.)

- Digital Electronics (Board 3)
 - Instrument Logic Conceptual design begun at UMd
 - CPU I/F interface definition needed
 - Event data 24 bits/event (?), serial interface, asynchronous, 1000 events/sec (?)
 - Discriminator rates (6) accumulated in ACTELs, 24 bits(?), serial I/F, read out periodically
 - Commands infrequent commands to set HV level and operating state of SIT. Calibration service of TOF board (once/second).
 - Analog Housekeeping 2 thermistors and a 0-5v HV monitor
- HVPS (Board 4)
 - Preliminary requirements submitted to UCB
 - Power and mass?, Use voltage divider or tap multiplier? Switch power or rely on inhibits for safety?

SIT Status (cont.)

- Miscellaneous
 - Need to define SSD bias requirement with Caltech
 - Need to define LV interface filters, regulators
 - Assume Caltech will build what is required for SIT
 - Housekeeping currently 2 thermistors and an HV monitor signal from the HVPS
- Harness
 - assume part of SEP harness provided by Caltech
- Structure
 - SIT will be integrated part of the SEP box

SIT Status - Open Items

- Telescope
 - Thermal design, acoustic cover, UMd inventory, procure detectors
- Energy Electronics: Caltech hybrid/VLSI circuit definition
- TOF : Design of fast amps, and are discriminators necessary?
- HVPS: Power/mass/size?, voltage divider or taps from multiplier?, switch power or rely on inhibit and level commands for safety?
- Digital Electronics: Define CPU interface
- Other: LVPS filtering? Detector bias filtering?
- Testing: Simple DPU simulator needed from Caltech

SIT Description - Integration/Test

- General
 - Our preference is that SIT electronic boards and telescope be separate enough from the rest of SEP that SIT can be assembled onto a test fixture and tested as a unit prior to integration with the rest of SEP.
- **Test Flow** Proposed test flow:
 - Build and test individual SIT subsystems (various locations)
 - Assemble SIT on test fixture (UMd)
 - Functional test of SIT (UMd)
 - Bench tests with pulsers and test equipment
 - Vacuum tests with alpha particles
 - Characterization of performance with temperature?
 - Bench Calibration
 - Accelerator calibration
 - Deliver SIT to SEP, Integration & Instrument-level Test(SEP)

SIT - Changes Since Proposal

- Telescope: none
- Energy Electronics: mass increase of 87g due to oversight, power increase of 33mW from reassigning voltage lines and local regulator
- TOF: 6x8 cm board size from early MPAe e-mail seems small to UMd, small increase in power from reassigning voltage lines (18mW)
- HVPS:
 - Proposed power was 100mW. Per conversation with Peter Berg in Mar 00 estimated power has risen to 160 mW
 - we have added a DAC to digital electronics to provide HV control (proposal assumed digital control)

SUMMARY:

- Power increase of 111mW (= 33+60+18)
- Mass increase of 87 grams (energy electronics)
- Bit Rate no change (60bits/sec)

SIT - Resources

MASS (g)		POWER (mW)	
<u>Proposal</u>	<u>Current</u>	<u>Proposal</u>	<u>Current</u>
483	483	0	0
0	87	50	83
100	100	350	365
60	60	50	53
100	100	100	160
0	0	0	0
10	10	0	0
30	30	0	0
783	870	550	661
	87		111
	Proposal 483 0 100 60 100 0 100 30	Proposal Current 483 483 0 87 100 100 100 100 60 60 100 100 100 <	Proposal Current Proposal 483 483 0 0 87 50 100 100 350 60 60 50 100 100 100 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 0 0 100 0 0 100 100 0 100 0 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 100 100 100 100 100

SIT - Electronics Board Area

Board	<u>Proposal</u>	<u>Current</u>
Energy Electronics	Included per Sandy Schuman with Caltech estimate	17 x 6 cm
TOF electronics	6 x 8 cm per MPAe e-mail	6 x 8 cm (1)
Digital Electronics	10 x 7 cm	10 x 7 cm
HVPS	11 x 7 cm	11 x 7 cm
Miscellaneous	0	tbd (filters?)

Notes 1. Not sure if includes amplifiers, discriminators

SIT - Upcoming Tasks

- Inventory WIND/STEP Telescope parts
- Support SEP preliminary mechanical design
 - inputs for telescope pointing
 - inputs for location of telescope and electronics in box
 - thermal requirements
- Preliminary CPU I/F definition
- Firm up TOF and HVPS designs
- Preliminary Digital Electronics Specification
- Discussions with Caltech on CPU requirements

SIT - Schedule/Concerns

- Schedule
 - 13 months design (phase B through CDR)
 - 18 months instrument build/test (CDR through delivery)
 - 12 months S/C integration/test (delivery through launch)
- SIT Technical Staffing is very tight
 - Phase B: total technical effort is 2/3 of 1 FTE
 - Phase C/D: starts at 1/3 FTE for 1 year and drops to 1/10 FTE for remainder
- UMd has no technician so cannot build or modify flight hardware
 - how will we trim the electronics?
- There is no non-flight hardware to check designs

CPU Data Processing Requirements

- Collect and Process Event Data
 - Events arrive asynchronously over serial interface from SIT
 - Assign a box number and a 1-bit priority to each event using a sequence of lookup tables. For each event increment the appropriate box rate(s). Select events to be read to ground in full, based on priority bit.
 - Event rate < 1000/sec
 - Expected lookup table size: 28 kBytes
- Collect and Process Discriminator rates
 - Periodically (e.g. once/sec) collect discriminator rates. Accumulate them, compress them.
- Collect and Convert Analog HK data
 - Periodically collect 3 analog HK values, convert to digital
- Format data into Science Data Record and output to IDPU
- Commanding

Proposed Science Data Record

- 512 seconds of data
- Header, including time 6 bytes
- 728 PHA events (36 bits each)
 - 728 * 4.5 bytes = 3726 bytes
- 128 low-time resolution (512 sec) box rates (compressed to 12 bits)
 - 128 rates * 1.5 bytes = 192 bytes
- 9 high time resolution (32 sec) box rates (compressed to 12 bits)
 - 9 rates * 16 intervals * 1.5 bytes = 216 bytes
- 6 discriminator rates (32 sec) (compressed to 12 bits)
 - 6 rates * 16 intervals * 1.5 bytes = 144 bytes
- Trailer including HK data and checksum 6 bytes
- TOTAL: 3840 bytes / 512 sec = 60.0 bits/sec