PR Numbers: 1xxx=UCB, 2xxx=Caltech/JPL, 3xxx=UMd, 4xxx=GSFC/SEP, 5xxx=GSFC/Mag, 6xxx=CESR, 7xxx=Keil, 8xxx=ESTEC, 9xxx=MPAe

Assembly : SEP LVPS	SubAssembly : Top Board
Component/Part Number:	Serial Number: FM1
SEP_Top_F001	
Originator: Selda Heavner	Organization: U.C. Berkeley
Phone : 510-643-8640	Email : selda@ ssl.berkeley.edu

Failure Occurred During (Check one $\sqrt{ }$)

v Functional test
Qualification test
S/C Integration
Launch operations

Environment when failure occurred:

v Ambient	Vibration	Shock	Acoustic
Thermal	Vacuum	Thermal-Vacuum	EMI/EMC

Problem Description				
During first power-on of the SEP LVPS Top Board did not produce output voltages 2.5V and 3.4V. Each voltage is generated from a separate LTC1877 regulator.				
Analyses Performed to Determine Caus				
The SYNC signal of LTC1877 should not receive any negative voltages. The Schottky Diode 1N5711-1 does not prevent negative voltages. When the SYNC signal pin goes negative the LTC1877 turns off. This is a design problem, not a layout issue.				
Corrective Action/ Resolution				
Rework v Repair Use As Is Scrap 1. Remove D79 2. Remove R69 3. Remove C99 4. Install a 2N2222A transistor as shown in Figure 1. 5. Connect the collector (Pin3) of Qnew1 to the cathode pad of D79 6. Connect the emitter (Pin1) of Qnew1 to the anode pad of D79 7. Connect a $2.49 \mathrm{~K} \Omega$ (Rnew2) resistor to the base of Qnew1 and to C99 (RNC50H2491DS) 8. Connect a $4.99 \mathrm{~K} \Omega$ (Rnew1) resistor from C91A (5.1 V side) to SYNC of U19 (Figure 2 and 3) (RNC50H4991DS) 9. Use shrink tubing where the leads are exposed. 10. During staking process stake, Qnew1, Rnew1, Rnew2 and the Rnew2 feed-through hole. 11. Update the schematics with the changes made to the design. See attached photos of the post-repair and pre-coat, pre-stake photos. The transistor was deadbugged, shrink tubed and staked at the wires. A lash splice was used to make the repair. The schematics wer e updated and the fix was applied to FM2. Board level and then system level LVPS testing was successful.				

Date Action Taken:_2004-4-23
Retest Results:
Success
Corrective Action Required/Performed on other Units v Serial Number(s): \qquad
Closure Approvals

Figure 1: SEP LVPS Top board Schematic

STEREO IMPACT

PR-1005
SEP LVPS Top FM1
2004-04-27

Figure 2: SEP LVPS Top Board Proposed Solution for PR-1005 (view from bottom)
Note: Soldering and wires shown in the figure are for information only. Proper wire and soldering technique will be used.

STEREO IMPACT

PR-1005
SEP LVPS Top FM1
2004-04-27

Figure 3: SEP LVPS Top Board Proposed Solution for PR-1005 (view from top)
Note: Soldering and wires shown in the figure are for information only. Proper wire and soldering technique will be used

STEREO IMPACT

PR-1005
SEP LVPS Top FM1
2004-04-27
SEP LVPS Board Top View - Post repair, pre-coat, pre-stake photos.

SEP TOP FROM TOP VIEW

STEREO IMPACT

TOP BOARD FROM DOTTOL VIEW

