STEREO *IMPACT*

Requirements Verification / Validation Plan

IMPACTRequirementsVerification_B.doc Version B – 2002-Jul-11

David Curtis, UCB IMPACT Project Manager

Janet Luhmann, IMPACT Principal Investigator

Rev.DateDescription of ChangeApproved ByA2002-Jun-12Preliminary Draft-B2002-Jul-11Add SEPT Verification plan
Add LET Verification Plan-Image: Second Second

Document Revision Record

Distribution List

Dave Curtis, UCB Janet Luhmann, UCB Harry Culver, GSFC Robert Lin, UCB Davin Larson, UCB Mario Acuna, GSFC Tycho von Rosevinge, GSFC Richard Mewaldt, Caltech Alan Cummings, Caltech Mark Wiedenbeck, JPL Glen Mason, UMd Reinhold Mueller-Mellin, Kiel Trevor Sanderson, ESTEC Jean Andre Sauvaud, CESR

Table of Contents

Document Revision Record i					
Distribution Listi					
1. Inti	roduction	L			
1.1.	Document Conventions	!			
1.2. Applicable Documents 1					
	ence Requirements1				
	formance Verification1				
3.1.	MAG Requirements				
3.2.	SWEA Requirements				
3.3.	STE Requirements 4				
3.4.	SIT Requirements	;			
3.5.	SEPT Requirements				
3.6.	LET Requirements				
3.7.	HET Requirements				
	1				

1. Introduction

This plan describes how the IMPACT team will verify that the IMPACT instrument suite how the IMPACT Instrument satisfies the instrument science objectives. Another document, the IMPACT Environmental Test Plan, describes verification that the instrument meets its environmental requirements. This plan is based on the instrument performance requirements as called out in the IMPACT Performance Requirements document.

1.1. Document Conventions

In this document, TBD (To Be Determined) means that no data currently exists. A value followed by TBR (To Be Resolved) means that this value is preliminary. In either case, the value is typically followed by a code such as UCB indicating who is responsible for providing the data, and a unique reference number.

1.2. Applicable Documents

The following documents include drawings and STEREO Project policies. All documents and drawings can be found on the Berkeley STEREO/IMPACT FTP site:

http://sprg.ssl.berkeley.edu/impact/dwc/

- 1. PhaseAReport/ Phase A Report, split into a number of files
- 2. Project/Project/460-RQMT-001-MRDrevB Mission Requirements Document
- 3. Specifications/IMPACTPerformanceSpec_H IMPACT Performance Requirements
- 4. Plans/IMPACTEnvTestPlan_A IMPACT Environmental test plan
- 5. Plans/STEREO-IMPACT-PAIP_E IMPACT Performance Assurance Implementation Plan

2. Science Requirements

The top-level science requirements and their flow-down to the IMPACT instrument are listed in the STEREO Mission Requirements Document (reference 2). From these requirements, the instrument performance requirements below have been extracted or derived in the IMPACT Performance Requirements (reference 3).

3. Top-Level Requirements Validation

The following section describes how the instrument performance requirements are verified, mostly at the instrument level. This section describes the end-to-end validation testing.

The IMPACT suite consists of a number of instruments connected together through the SEP Central electronics and the IDPU as indicated in Figure 3-1. Most of the performance verification is done at the instrument level, without the IDPU or SEP Central present.

The interfaces between the instruments and the IDPU and SEP Central are via serial digital interfaces, and in some cases, low voltage and bias supply power, which are simulated by GSE during instrument level tests.

Full performance/calibration tests at the integrated suite levels cannot be made because these tests require special facilities. High Voltage supplies can also not be operated to full levels in air. At these times, test pulsers, radiation sources, cosmic rays, etc. shall be used to stimulate the instruments as close to the front end as possible to verify data flow and operation.

3.1. SEP Suite Testing

The SEP instruments shall come together with SEP Central, including the SEP Low Voltage and Bias supply, at Caltech. This shall verify the following:

- Functionality of the serial interfaces
- End-to-end data flow testing (as far as the SEP Central interface to the IDPU).
- Capability of SEP Central to handle the full SEP instrument suite without interference between instruments due to processor loading, etc.
- EMC self-compatibility of the SEP suite, including compatibility of the instruments with the flight SEP Low Voltage and Bias supplies

3.2. Boom Suite Testing

The Boom suite (SWEA, STE, Mag, Boom) shall come together with the IDPU at Berkeley for end-to-end testing. This testing shall verify:

- Functionality of the serial interfaces
- End-to-end data flow testing
- Capability of the IDPU to handle the boom suite without interference between instruments due to processor loading, etc.
- EMC self-compatibility of the boom suite, including compatibility of the instruments with the Boom and IDPU low voltage power converters.

3.3. Full Suite Testing

The suite first comes together (as flight hardware) at the EMC test. The current plan is for PLASTIC to also be present for this test, but that is not being carried as a requirement. During this test we will verify the following:

- Functionality of the serial interfaces
- End-to-end data flow testing (as far as the spacecraft interface)
- Capability of the IDPU to handle the full instrument suite without interference between instruments due to processor loading, etc.
- EMC self-compatibility of the suite
- EMC Conducted and Radiated tests as called out in the Environmental Verification Plan (reference 4)

These tests are similar to those that will occur during the Spacecraft-level performance tests.

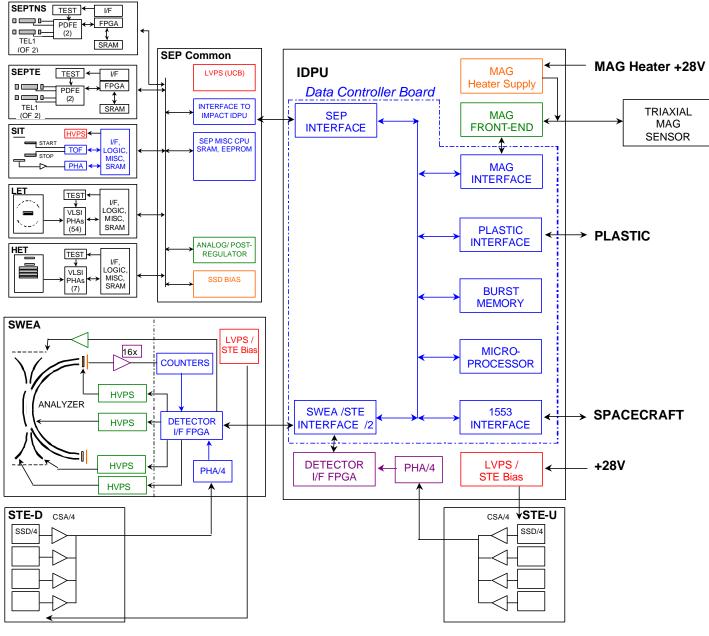


Figure 3-1 IMPACT Block Diagram

4. Instrument Performance Verification

The requirements are listed below by instrument. The table lists both the desired goal as well as the minimum acceptable requirement.

4.1. MAG Requirements

Description	Goal	Requirement	Verification
Noise level	0.01 nT	0.05nT	
Absolute Accuracy	+/- 0.1 nT	+/-0.1nT	
Range	+/-512 nT,	+/-512 nT	
	+/-65536 nT		
Drift	+/-0.2 nT/yr	+/-0.2nT/yr	
Time Resolution	1/4 sec.	1 sec	
	1/32 sec. (Burst)		

4.2. SWEA Requirements

Description	Goal	Requirement	Verification
FOV	360 x 130 degree	360 x 60	Calibration with electron gun at CESR
		degrees	
Resolution	22.5 degree	45 degrees	Calibration with electron gun at CESR
Energy	1 to 5000eV	20 to 1000eV	Calibration with electron gun at UCB for high energy end, with
			extrapolation to lower energies by analysis
Energy Resolution	65%	100%	Calibration with electron gun at UCB for high energy end, with
(Telemetry)			extrapolation to lower energies by analysis
Geometric Factor	$0.01 \text{ cm}^2 \text{ ster}$	$0.001 \text{ cm}^2 \text{ ster}$	Calibration with electron gun at CESR
	E(eV)	E(eV)	
Max Count Rate (per	1E6 counts/sec	1E5	Calibration with electron gun at CESR
22.5 degree sector)		counts/sec	
Time Resolution	1 minute (3D) to	1 minute	Analysis of telemetry allocation together with suite end-to-end
	2 seconds		verification test of data throughput
	(moments, burst)		

4.3. STE Requirements

Description	Goal	Requirement	Verification
FOV	Two opposite	60 x 60	Geometrical analysis of STE instrument together with spot checking
	80 x 80 degree	degree	during calibrations with an electron gun
Resolution	80 x 20	60 x 20	Geometrical analysis of STE instrument together with spot checking
	degrees	degrees	during calibrations with an electron gun
Energy	2 - 100 keV	5 – 100 keV	Calibrations with an electron gun and sources
Energy Resolution	35%	100%	Calibrations with an electron gun and sources
(Telemetry)			
Energy Resolution	300eV FWHM	2keV	Calibrations with an electron gun and sources
(Electronic)			
Geometric Factor	$0.4 \text{ cm}^2 \text{ ster}$	$0.1 \text{ cm}^2 \text{ ster}$	Calibrations with an electron gun and sources
Background	<1c/s/detector	<30c/s	No-source background measurements
		/detector	
Max Count Rate (per	100,000	10,000	Calibrations with an electron gun and sources
detector)	counts/sec	counts/sec	
Time Resolution	16 seconds	1 minute	Analysis of telemetry allocation together with suite end-to-end
	2 seconds		verification test of data throughput
	(burst)		

4.4. SIT Requirements

Description	Goal	Requirement	Verification
FOV	17 x 44 degrees 17 x 44		Geometrical analysis of SIT telescope, thin foil and solid state detector
		degrees	size.
Energy	30-2,000 keV/nuc	30-2,000	Analysis of thin foil thickness (from manufacturer's specification), solid
	He-Fe	keV/nuc He-Fe	state detector threshold, and dynamic range of solid state detector energy
			amplifier and time-of-flight system. Spot-checks of performance done
			with radioactive alpha-sources, and ion beam calibration at Brookhaven
			Tandem Van de Graaff.
Mass Resolution	$0.85 \text{ AMU} (^{16}\text{O} \text{ at})$	0.85 AMU	Laboratory calibration with radioactive alpha sources (energy approx 1
	100keV/nuc)	(⁴ He at	MeV/nucleon)
		1MeV/Nuc)	
Energy Resolution	20keV FWHM	35keV FWHM	Pulser calibration of energy system, along with calibration using
		@ 22C	radioactive alpha sources.
Geometric Factor	$0.4 \text{ cm}^2 \text{ ster}$	$0.4 \text{ cm}^2 \text{ ster}$	Geometrical analysis of SIT telescope, thin foil and solid state detector
			size.
Background	10^{-2} events/sec in	10^{-2} events/sec	Observe background event rate during lab vacuum tests without source.
	quiet time	during vac test	
Max Event Rate	1000 events/sec	1000	Pulser calibration of instrument, and calibration at tandem Van de Graaff
		events/sec	at Brookhaven National Lab.
Time Resolution	1 Minute	15 Minutes	Analysis of instrument bit rate and telemetered rate table size.

4.5. SEPT Requirements

Description	Goal	Requirement	Verification
FOV	2 sets of	2 sets for electrons and	Geometrical analysis of SEPT telescope, collimator aperture,
	oppositely directed	protons, each with: 2	magnet air gap, thin foil, and solid state detector size.
	52 degree cones	oppositely directed	
	each for electrons	view cones in-ecliptic,	
	and protons	2 oppositely directed	
		view cones off-	
		ecliptic, 45 degree full	
		opening angle	
Energy	20-400 keV	30-400 keV, electrons	Analysis of vector field of magnetic remanence with point charge
	electrons,	60-2000 keV, protons	model approach. Spot-checks to verify analytical calculations.
	20-7000 keV		Measurement of foil thickness with alpha-spectrometer (50 nm
	protons		resolution).
			Mathematical model of SEPT telescope (GEANT Monte-Carlo-
			Simuation). Verification of model with ion-source (up to 300
			keV) at HMI, Tandem Van de Graaff (up to 7 MeV) at HMI,
			conversion electrons (up to 1 MeV) with radioactive sources.
Energy Resolution	20% electrons,	30%, electrons	Measurement with cosmic ray muons, radioactive sources, proton
(Telemetry)	20% protons	30%, protons	beam, pulser calibration.
Geometric Factor	$0.52 \text{ cm}^2 \text{ ster},$	0.4 cm^2 ster, electrons,	Geometrical analysis of SEPT telescope, collimator aperture,
	electrons,	0.4 cm^2 ster, protons	magnet air gap, thin foil, and solid state detector size. Monte-
	$0.68 \text{ cm}^2 \text{ ster},$		Carlo-Simulation to determine telescope response as function of
	protons		energy and incidence angle.
Background	< 0.2 counts/s on	< 2 counts/s on	Measurement of background event rate during lab vacuum tests
	ground, 20°C	ground, 20°C	without source.
Max Event Rate	25,000 counts/s at	25,000 counts/s at 2.2	Pulser calibration of instrument, calibration at tandem Van de
	2.2 MeV	MeV	Graaff at HMI (Hahn-Meitner-Institut, Berlin).
	250,000 counts/s	250,000 counts/s at 55	
	at 55 keV	keV	
Time Resolution	60 sec	60 sec	Analysis of instrument telemetry data, comparison with source
			strength measurements in lab.
Beacon Telemetry	e: 4 energy	e: 4 energy windows	Analysis of beacon telemetry data, comparison with instrument
	windows p: 4	p: 4 energy windows	telemetry data.
	energy windows		

Dave Curtis

4.6. *LET Requirements*

Description	Goal	Requirement	Verification
FOV	2 oppositely	2 oppositely	Geometrical analysis of LET instrument coupled with laboratory
	directed 130 x 30	directed 100 x 30	mapping of solid state detector areas.
	degree fans	degree fans	
Energy Range	H: 1.4 - 6	H: 1.5 - 3	Pulser and alpha-particle calibrations coupled with detector thickness
(MeV/nucleon)	He: 1.4 - 13	He: 1.5 - 13	measurements and heavy-ion range-energy relations. Verification at
	O: 2.5 – 25	O: 3 – 25	particle accelerator.
	Fe: 2.5 - 50	Fe: 3 - 25	
Geometric Factor	H, He: 0.9	H, He: 0.5	Geometrical analysis of LET instrument coupled with laboratory
$cm^2 ster$	6=Z=26: 4.5	6=Z=26: 2	mapping of solid state detector areas.
Element	Also resolve Na,	Resolve H, He, C,	Alpha-particle measurement of detector thickness uniformity coupled
Resolution	Al, S, Ar, Ca	N, O, Ne, Mg, Si,	with Monte Carlo simulations. Final verification at particle
		Fe	accelerator.
⁴ He Mass	=0.25 AMU	=0.35 AMU	Calibrations with alpha particle source and electronic pulser aided by
Resolution			analysis.
Max Event Rate	5000 events/sec	1000 events/sec	Bench tests with pulser; verification at particle accelerator.
Energy Binning	8 intervals per	6 intervals per	Pulser and alpha-particle calibrations supplemented by Monte-Carlo
	species for Z=2	species for Z=2	simulations. Verification at particle accelerator.
	4 intervals for H	3 intervals for H	
Species Binning	Add S, Ar, Ca	H, ³ He, ⁴ He, C, N,	Pulser and alpha-particle calibrations supplemented by Monte-Carlo
		O, Ne, Mg, Si, Fe	simulations. Verification at particle accelerator.
Time Resolution	1 minute H, He,	15 minutes	Pulser and alpha-particle calibrations.
	15 minutes Z=6;		
	Telemeter 4	1 prioritized	Analysis of telemetry allocation and event formats supplemented by
	prioritized	event/sec	pulser calibrations. Verify end-to-end data throughput at particle
	events/sec		accelerator.
Beacon Telemetry:	1 minute for H,	1 minute for H,	Pulser and alpha-particle calibrations. Final verification at particle
	He, 6=Z=26	He, 6=Z=26	accelerator.

L

4.7. HET Requirements

Description	Goal	Requirement	Verification
FOV (full angle)	58 degree cone	50 degree cone	
Energy Range	e: 1 - 8	1-6	
(MeV/nucleon)	H, He: 13 - 100	13 - 40	
	3 He: 16 – 50	16 - 40	
	~ 30 to 80 for 6 = Z	~30 to 80 for 6	
	= 26	= Z = 14	
Geometric Factor,	0.7	0.5	
cm ² ster			
Element	= 0.3 for $16 = Z =$	= 0.2 for 1 = Z	
Resolution, dZ	26	= 14	
(rms), for stopping			
particles			
⁴ He Mass	=0.20 amu	=0.25 amu	
Resolution			
Max Event Rate	5000 events/sec	1000	
		events/sec	
Energy Binning	Eight intervals per	Six intervals	
	species	per species	
Species Binning	Add $16 = Z = 26$	H, ³ He, ⁴ He,	
		6=Z=14,	
		Electrons	
Time Resolution	15 minutes	15 minutes	
	1 prioritized	0.3 prioritized	
	events/sec	event/sec	
Beacon Telemetry:	1 minute H, He, e	1 minute H,	
		He, e	