D. Management and Schedule

The IMPACT investigation involves a team of experts selected for their complementary skills in instrument building, data processing, scientific data analysis and interpretation, data dissemination and archiving, and education and outreach. The team has clear lines of authority and clear areas of responsibility for each team member that take maximum advantage of the experience of the members. Communication, efficiency, and need-driven documentation are hallmarks of the IMPACT management process. Instrument development, mission operations, data processing, dissemination, archiving and analysis, and education and outreach are all managed with the same approach.

All aspects of the investigation are highly leveraged on previous and existing NASA and ESA experience, investment, and infrastructure. UCB has extensive project management experience on NASA missions, including WIND, POLAR, MGS, and Lunar Prospector instruments, as well as the FAST and HESSI SMEX missions. UCB has developed similar instruments with CESR for WIND and MGS, and with GSFC on MGS and Lunar Prospector. The SEP group has worked together on a similar instrument complement for ACE.

D.1 Team Organization

The IMPACT investigation management organization (Figure D.1.1) is based on that for the UCB FAST/SMEX, HESSI/SMEX and WIND/3DP projects. The IMPACT Principal Investigator has overall authority on decisions affecting the science return of the investigation as a whole. She is the point of contact for NASA STEREO Mission Managers. She is ultimately accountable for the IMPACT Team's delivery of hardware, software, data products, education and outreach products, and scientific results. An Executive Committee consisting of team members with particular expertise in instrumentation (Lin, von Rosenvinge, Acuna) STEREO science integration (Gosling), data processing, dissemination and archiving (Russell), and education and outreach (Craig) is available to the PI for advice and assistance on matters pertaining to the overall investigation.

D.1.1 Project Manager and Operations/data Manager roles and Responsibilities

The PI delegates the investigation engineering management and technical oversight during the Phase B-D implementation periods to a senior UCB Project Manager (PM), Mr. David Curtis, who is responsible for the successful delivery of the IMPACT instruments, mission operation plans, and ground system. The Project Manager, under the direction of the PI, keeps the budget, schedule and technical integrity of the investigation on-track. This includes following and documenting the development and construction phases of all IMPACT instruments and setting up the ground system testing and integration framework. He defines the requirements and interfaces of the major technical elements and ensures that they are compatible with the STEREO project plans. The PM is the principal point of contact for the STEREO project MOC and SSC on technical aspects of the IMPACT investigation. The PM's role declines to a consulting role after Phase C/D.

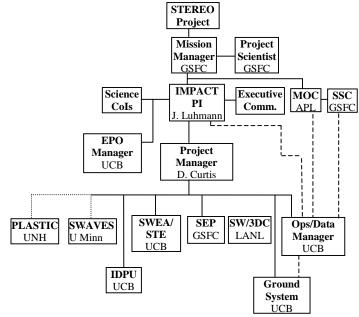


Figure D.1.1 Management Organization Chart: Dashed line indicates post-Launch. Dotted Line indicates coordination with SWAVES and PLASTIC.

Toward the middle of Phase C/D the PM is assisted at a modest level by a UCB Operations/Data Manager (ODM), who takes over in Phase E. The ODM, whose detailed duties are described in Section D.2, is responsible for the collection and verification of the IMPACT instrument command sequences, their integration, and their on-time delivery to the project MOC and SSC. The ODM reports to the PI and to the Executive Committee on matters related to interaction with the team and with the STEREO project. Our experience with the WIND mission support at UCB suggests that the ODM role could be handled by one person working an average of 25% time on the project through Phase E once the systems are set up.

D.1.2 IMPACT Subsystem Organization

The PM's and ODM's jobs are made more efficient by organizing the 7 IMPACT instrument providers into three units based on a combination of technical and institutional considerations. The three units consist of: an SW/SWEA-STE-MAG group represented by Lin at UCB, an SEP group represented by von Rosenvinge at GSFC, and a DPU group represented by the PM. The SWEA-STE-MAG group includes the STE and SWEA from UCB and CESR Toulouse, and the GSFC MAG (which occupy the IMPACT boom). The SEP group includes the GSFC/Caltech LET and HET, the UMD SIT, and Kiel/ESTEC SEPT. The DPU group includes the UCB IDPU, common LVPS, SIT HVPS and the Ground System, and is closely coordinated with the PLASTIC instrument development team as well as the SWAVES team and the spacecraft C&DH.

The three IMPACT instrument units work with the PM during Phase A-D, and the ODM during Phase E to enable efficient communication and delivery of hardware and software. At a low level during Phase C/D, and then at full capacity during Phase E, the IMPACT investigation Operations/Data Manager (ODM) at UCB works with the instrument units to enable delivery of the investigation data base to the SSC and the project-designated archive. The ODM also works with the SSC and the imaging team to enable optimum co-location of, and access to, the merged STEREO imaging and in situ data. The ODM reports to the PI and Executive group on issues related to his/her interaction with the team and with the STEREO project.

D.1.3 CoInvestigators and Associate Scientists Roles and Responsibilities.

The IMPACT CoIs and Associate Scientists provide an ongoing resource for PI Dr. Janet Luhmann and the STEREO project to draw upon throughout the investigation. The breadth that the CoI resource represents in experience and STEREO science is summarized in Table D.1.1. IMPACT investigation scientists interface directly to the IMPACT Education and Public Outreach (E/PO) activity and to the STEREO SSC activities. The specific roles and responsibilities of each CoI are breifly described below.

Professor Robert Lin and Dr. Davin Larson at UCB in concert with Drs. Jean-Andre Sauvaud, Philippe Louarn and Jean Dandouras of CESR/CNRS in Toulouse are responsible for the delivery of the STE and SWEA electron instruments and the interpretation of the measurements, with UCB primarily responsible for STE and CESR/CNRS primarily for SWEA.

Dr. Mario Acuna of GSFC is the MAG provider and scientist. Professor Christopher Russell at UCLA processes the MAG data and is responsible for the overall IMPACT investigation Web-based data access system.

Dr. Keith Ogilvie of GSFC is responsible for overseeing magnetic and electrostatic backgrounds controls for the IMPACT SW package and MAG.

Drs. Tycho von Rosenvinge and Donald Reames at GSFC are in charge of the LET experiment and also of the HET instrument and overall coordination of the IMPACT SEP component.

Dr. Richard Mewaldt and Professor Edward Stone of Caltech, together with Dr. Mark Wiedenbeck of JPL are the HET scientists also participating in LET development and testing and the development of the SEP common electronics.

Drs. Horst Kunow, Reinhold Mueller-Mellin, and Volker Bothmer of the University of Kiel are the SEPT scientists who contribute SEPT and its calibrated data for the IMPACT investigation. Drs. Trevor Sanderson and Richard Marsden of ESTEC supply electronics for the SEPT.

Professor Glenn Mason of the University of Maryland is the SIT scientist, responsible for delivering SIT and its data toward the fulfillment of IMPACT goals. Drs. Axel Korth and Stefano Livi of Max Planck Institute of Aeronomy will supply the TOF board with Co-Investigator Dr. Robert Lin of UCB supplying the High Voltage Power Supply.

Dr, Jack Gosling of Los Alamos National Laboratory coordinates the scientific interaction between IMPACT and the PLASTIC and SECCHI investigations, with CoIs Dr. David McComas and Herbert Funsten contributing solar wind expertise.

Dr. Jean-Louis Bougeret of DESPA in Meudon is in charge of the IMPACT investigation interface with the SWAVES investigation and the related science.

Dr. Jon Linker of SAIC brings to the IMPACT investigation solar data-based global corona and CME models that interface with the interplanetary transport and ICME models of Dr. Victor Pizzo of NOAA-SEC and Prof. Tamas Gombosi of the University of Michigan. Dr Karoly Kecskemety of KFKI in Hungary works with Co-Investigator Gombosi to enhance the use of the Michigan model for IMPACT SEP data interpretation purposes. Dr. Chee Ng applies the information on ICME shocks from these global simulations to SEP transport models.

A detailed listing of hardware, software, and GSE development responsibilities is listed in Appendix G. Our investigation also includes Associate Scientists who work with the above CoI members on key instrumental and scientific tasks: Dr. Alan Cummings, Caltech, on the electronics design, fabrication and test activities for LET and HET; Dr. Richard Leske, Caltech, on LET and HET calibration, testing and data analysis activities; Dr. Daniel Reisenfeld, Los Alamos National Laboratory, on solar wind data analysis; Dr. Stuart Bale, Space Sciences Laboratory, UCB, on coordinations with the Radio/Plasma Wave team, and integrated in-situ and radio data analysis and processing software; Prof. Dr. Vytenis M. Vasyliunas Max Planck Institut fuer Aeronomie, on general theoretical support; Dr. Zoran Mikic, SAIC, with CoI Linker, on the coronal and Solar Wind modeling; Dr. Pete Riley, SAIC with CoI Linker, on Solar Wind modeling; Dr. Darren DeZeeuw, University of Michigan, with CoI Gombosi, on Sun-to-Earth Simulations; Dr. Dusan Odstrcil, NOAA Space Environment Center and CIRES U. of Colorado, with CoI Pizzo, on interplanetary propagation models; Dr. Nahide Craig, Space Sciences Laboratory UCB, as IMPACT E/PO manager.

Co-Investigator	Pri	mar	y Ro	le			0					•		Ex	perie	nce											Ex	pert	ise								
				1								U			-																						
	MAG	SWEA	STE	SIT	SEPT	LET	HET	Mission Ops.	SWAVES Coord.	Plastic Coord.	Modeling	ata Access Archiving	EPO	IMP	PVO	ISEE	ISTP	SAMPEX	SOHO	IMAGE	TWINS	MGS/Lunar Pros.	Ulysses	ACE	CassiniGalileo	Cluster	Solar	Corona	CME	Solar Wind	IMF	SEP	Space Weather	CIRs	Pickup Ions	ACRs	NASA Funding
J. Luhmann - PI		[j	<u> </u>	j	j	İ	X	X	j	X	х	х		X	j	х	<u> </u>		İ	j	Ţ	Ī	İ	х		<u> </u>	х	X	х	х	Ē	х	j	İ	İ	х
M. Acuna	X		1			1		х	1		1		1		î	1	х			1	1	X		1					1		х			1	1		X
C. Russell	X					[[1			Х	1		X	х	х			!	[1	Х				X	х	X	 	х	<u>.</u>	[Х
K. Ogilvie	X	х	1	-		1			1		1		1		î	X	х	<u> </u>		1	1			1					X	х	х			1	1		Х
J. Dandouras		х	X	1]	[[Ţ	<u>]</u>	[Ţ	Ţ.	i		Ť	Х	[i		!	[1	1	х	Х			Ţ	Х	[Х	Ţ	[
D. Larson		х	X	1	1	1	1	X	1		1	<u> </u>	1		î	1	х	<u> </u>			1	1		1				х	X	х			X	<u> </u>	1	(х
P. Louarn		х	X		<u> </u>	[Ţ	<u> </u>	1	[Ţ				T	1					[Ţ	1	1	X	X			T	X			х	<u> </u>	<u> </u>		
J. Sauvaud		X	X	1	1	1	```	X	(me		<u> </u>				î	(me		<u>}</u>		<u> </u>		X			х	х			<u> </u>	X) 	X	î	1	(*****) 	
H. Funsten		•••••	<u>;</u>		1	1	1	× ×	1	X	-	ç !	i		Ť	1	[X	X	1	×	1	(*************************************		1		X	X	1	******* !		1	1		х
J. Gosling		<u>.</u>	<u>}</u>		<u>.</u>	200		<u>.</u>		X			1	Х	÷	×		<u>.</u>		<u>.</u>			×	X	X		X	х	X	×	X		X	X		<u>.</u>	Х
D. McComas		6	***** !	- () 		х		X			1		X	 	X	¢• • • • • •	(X	X		×	X	X			х	X	х	X	4	X	X	<u>†</u>	6 4	х
S. Livi		<u> </u>	Ì	X	1	1	Ť	Î.	1	<u> </u>	1	Î	1		Î.	Î	}	Ì		İ	Ì	1		1					Î	X	1			Î	1	Î î	
A. Korth		•	1	х) 	· •	e		1		 	1		***** 	4 	х		(•	<u></u>		х	1	X					X		+ 		*	1		
R. Lin		X	X		1		·	X	x	Ì	†	<u> </u>	j	Х	Ť	x	x	İ		i	<u> </u>	X		İ		x	X	х	X	х	<u>.</u>	X	i	Î	Ì	İ	x
G. Mason			1	X		1	· •	X	1	1	1	1					X	х		1	<u> </u>			X					X	[1	X		X	X	Х	х
V. Bothmer		i	Ì.	-j	x	j	·†	Ť	i	j	†	i	j		Ť	Í	Ì		х	i	i	1	x	1			X	х	X	x	x	x	х	X	Ì	İ	
H. Kunow			1		X X	1	· •	х	1	1	1		1			1	<u>}</u>		х	<u> </u>	<u>}</u>		X X	1				х	X			х		X	<u>†</u>	i	
R. Marsden		<u>.</u>	j	-j	X	j	·;	÷	1	<u>.</u>	Ť		1		Ť	x	X		х	;	;	÷	х	:				x	X		X	X	x	X	†	X	
R. Mueller-Mellin		(<u>}</u>		Х		· •	х			÷	<u>.</u>			<u> </u>	1		A	Х	<u> </u>			х	1					X			X		X	1	X	
T. Sanderson		1	[- <u>[</u>	Х	[· [<u> </u>	1	[T		1		T	X	X		х	;	ſ	<u>.</u>	X	1	r				х	1	X	X	х	х	1	Х	
T. von Rosenvinge			<u>}</u>		1		X	X	1		1	<u></u>		X	<u>^</u>	X	x	X		1			1	X					<u>†</u>			X		X	X	X	х
D. Reames			j	-	ja na se	X	X	Ť.	j	<u>.</u>	Ť		j	X	Ť.	X	X	X		ļ	j	ţ	i	j			(† i		Ť	<u>.</u>	<u>.</u>	X	х	Х	İ		х
R. Mewaldt) 	<u>}</u>		ĵ	X	X	X	î	}	ì	î	1	Х	î	X	<u>}</u>	х	(***** 	<u> </u>	}	ţ	<u>.</u>	X			(* (†	[}	х	1	X	<u>}</u>	X	х
E. Stone			<u>.</u>		in na I		X	ļ.	i	<u>.</u>	1		j	X	Ť	X		X	Čer na na n	i	ļ	1		X			<u> </u>		1	<u>.</u>	<u>.</u>	X	<u>.</u>	ţ	1	X	
M. Wiedenbeck		<u> </u>	<u>}</u>	1	†		X	x	(me	}	÷	<u> </u>	1		î	X	}			<u> </u>	}	1	<u> </u>	X			+		Ť.	[}	X	<u> </u>	î	1	X	
K. Kecskemety		•	÷		 !	1		erini. I	 !	•	X	• !	1				•	•	х	• !	 !		4 !	1		x		х		 	i !	X		*	1		
J. Bougeret		<u> </u>	<u> </u>		<u></u>	}	<u></u>	†	х	}		<u></u>	}		†	<u> </u>	x	Ì		<u> </u>	}	÷	x				+		÷	[}		<u> </u>	<u> </u>	1	(
T. Gombosi		•	;		1) 	1		1	¦	X	 	1		<u>†</u>	1	1	<u>-</u>	e	<u> </u>	<u>.</u>			1	х				1	х			х	†	†		х
J. Linker		i	<u>.</u>		†) 	·	ŕ	1	<u>}</u>	X		<u>i</u>		†	í				<u> </u>	;		i	i			X	х	x		<u>.</u>	i		X	1	i i	х
C. Ng			<u>†</u>		1	}	<u>†</u>	Î	1	<u>}</u>	Х					1	<u></u>	†		1	<u>}</u>		<u>.</u>	1			+	÷.			<u>}</u>	х		X	†	• i	х
V. Pizzo		i	;		†	}	†	t	i		X	<u></u>	[†	<u>i</u> rrr	}	†		i	<u>.</u>	<u>.</u>	j	i			x	х	x	х	<u> </u>	1	x	i	1	ii	х

Table D.1.1 IMPACT Co-Investigator Roles, Experience and Expertise

D.2 Management Process

D.2.1 Decision Making.

The IMPACT investigation policy is that problems are solved at the lowest reasonable organizational level where authority is commensurate with responsibility. Instrument builders have the responsibility to deliver hardware and software according to the project-approved investigation schedule and cost plan, and have authority to make decisions within that plan. Decisions affecting schedule, cost or weight/ power resources move up to the PM who has the authority to adjust them with consideration for the full investigation. The PI is brought into these decisions when they affect the investigation's science requirements and/or overall budget. The PM makes investigation decisions that are within the technical development plan with the concurrent understanding of the PI. The PM also optimizes use of shared components, including the IDPU, common LVPS, and GSE within the investigation and with our coordinated PLASTIC and SWAVES investigation partners. Any change affecting the science return, or the investigation resources beyond the investigation reserves, shall be discussed and decided with the STEREO Program Management. Decisions affecting science return, including all investigation descopes, are made by the PI with input from the PM, executive group and others as she deems necessary.

D.2.2 Communication, Meetings and Documentation.

The PI initiates semiweekly (through Phases A-D) and then monthly (during Phase E) teleconferences with the IMPACT team that review the state of the IMPACT investigation, identify problems or opportunities, and formulate strategies for dealing with the latter. This group is also available to the PI on an as-needed consulting basis. The PI has established an investigation Web site IMPACT at UCB (http://sprg.ssl.berkeley.edu/impact) where investigation documents, including a summary of the group teleconferences, are available to team members and the project. Investigation documentation are written, revised and updated as required for the investigation to progress by the STEREO project. We identify early and clearly who is responsible for all documentation. Interface control documents (mechanical, electrical and information), used to track interfaces, and to test and inspect assemblies, are the PM's responsibility, although the PM may solicit inputs from the appropriate team member. The ODM maintains records of instrument command histories and data received, processed and submitted. We use the latest tools for design documentation and configuration control. The control documents are maintained on line

on the Web. Change notices are issued via email and the Web documents kept up to date. Other reporting is handled or delegated by the PI.

Semiannual meetings of the entire IMPACT team set team policy, review progress, plan IMPACT science operations, and promote collaborations on scientific analyses. During Phases A-D, the team meetings include instrument reports, project representative reports, and the PM overview of the IMPACT investigation status. As the ODM roles phase in, discussions include the mechanics of the experimenter to ODM to MOC/SSC connections, and experimenter plans for instrument-level data validation and calibration software provision to the ODM. During Phase E, the major part of the team meetings is dedicated to science discussions and workshops. Throughout all mission phases, the IMPACT EPO team member describes the development of our EPO connections and solicits assistance, participation, and specialized science products from the team. In this forum, team members also have the opportunity to provide feedback on any aspect of the investigation, including their concerns regarding the organization or management of the investigation. SWAVES, SECCHI and PLASTIC team representatives will be invited to attend. At least one of the team meetings will be routinely coordinated in location and time with SECCHI, SWAVES, PLASTIC, and/or STEREO project meetings by prearrangement.

The venue of the science team meetings is where the IMPACT modeling activities first come into play in Phases C/D. Our plans for synergistic modeling and data analysis require that our investigation operations and data processing strategy be designed to allow ready comparisons with modeling results. In particular, our summary data base design is to include the information needed to compare the IMPACT investigation data with the results from our global MHD models of solar wind structure and ICMEs, and to perhaps accommodate some of the modeling results and display tools. The IMPACT modeling activity is fully integrated during Phase E.

Team meeting agendas will be set by the PI with input from the IMPACT team. The PI will record highlights and action items from the team meetings for posting on the IMPACT Web site. Newsworthy results will be communicated to the STEREO project scientist and the STEREO E/PO personnel.

D.2.3 Reviews.

In addition to internal meetings, the IMPACT team will support Project meetings as required. This includes weekly Project/Instrument telecons, and periodic meetings.

The IMPACT team will also support instrument and project level formal reviews and informal peer reviews, as called out in the PAIP, appendix B, section 2. Review support packages in the form of viewgraphs shall be provided to Project for formal reviews in advance.

D.2.4 Reporting.

Financial reporting shall be in the form of 533M and 533Q reports as required by the contract, including explanations of significant variances from the planned expenditures.

D.2.5 Government and APL Furnished Property.

No government-furnished property or services are required for the IMPACT development. Some QA services may be contracted with GSFC, such as PWB screening, on a cost basis.

APL will provide two spacecraft emulators, and facilities for integration and test of the instrument with the spacecraft (to be called out in the spacecraft/instrument ICD). No other APL services are required.

D.3 Risk Management.

The PM keeps a status record of each partner's funding and expenditures, their percent completion, and their major deliverables versus schedule. If any partner appears to present a risk to the schedule and/or budget of the overall investigation, a review is held involving the PM, the PI, the relevant instrument group leader (see Section D.1.2), and the partner in question, to develop a plan to return to the schedule or budget. If the partner cannot return to the schedule or budget, an alternative plan is developed. In particular, if an instrument contributing one of the baseline measurements is involved, an alternative instrument may be procured within the team. This is possible because of overlapping experience and expertise, as in plasma analyzer technology between UCB and CESR, magnetic field measurements between GSFC and UCLA, and SEP instrument expertise at GSFC, Caltech and UMd. Many reliable and current designs exist within our institutions due to their ongoing involvement in space hardware. In most cases an entire instrument would not be involved, and work can be traded within the team to reduce the cost or accelerate the pace of progress toward delivery.

Table D.3 outlines identified risk areas and possible mitigation options (not prioritized). The IMPACT instrumentation has significant heritage, greatly reducing technical, schedule, and cost risks. In particular, the MAG, SWEA, SIT, SEPT, plus much of HET and LET are virtual copies of previously flown instruments, so the risk is very low. The STE is based on proven technology, but in a new application. There is some technical risk in meeting the lower energy levels for STE, but our approach is to achieve the best energy threshold we can without investing in a significant development program, so the cost risk is contained. The new development for STE is scheduled for early prototype fabrication and testing, to be completed before CDR (5/01). At that point, decisions about descopes can be made.

Risk AreaContingency PlanImpact1STE NoiseIncrease thresholdLose lowest energy2STEDrop STENo suprathermal electrons3SWEDrop STE, UCB augments SWENo suprathermal electrons4Internat1 support for SWE or STEUCB builds both; or drops STE, buildsIncreased US cost; or no suprathermal electrons5SIT HybridsNon-hybrid solutionIncreased mass and power6SIT/3DC TOFSimpler versionIncreased mass and power7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased us space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11 (mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Feliminate SEPT Uos of phase space coverageSWE deflector coverage14Remove burst HET and/or LET detectorsLoss of high time resolution science16Power cycle instrumentsLoss of nergy range, geometrical factor, and/or background rejection17Power cycle instrumentsLoss of nergy range, geometrical factor, and/or background rejection <th>Table</th> <th></th> <th>Risk Management Op</th> <th></th>	Table		Risk Management Op	
2 STE develop. Drop STE porp STE, UCB augments SWE electrons No suprathermal electrons 4 Internat1 support for SWE or STE UCB builds both; or drops STE, builds Increased US cost; or no suprathermal electrons 5 SIT Hybrids Non-hybrid solution Increased mass and power 6 SIT/3DC TOF Simpler version Increased mass and power 7 LET/HET VLSI Use VLSI from ACE/SIS plus commercial preamp Increased mass and power resources 8 LET/15um detectors Use spare detectors from WIND/LEMT Reduce d reliability and possibly reduced geometrical factor 9 Internat1 support for SEPT UCB builds SEPT Increased US cost 10 Boom develop. Body mount SWE and/or STE Reduce phase space coverage 11 (mass, power) Descope /EI Reduce d angular resolution 12 Descope /LIPS Increased risk Isolation Increased risk Isolation 14 Reduce number of HET and/or LET detectors Loss of high time resolution science 16 Reduce number of HET and/or LET detectors Loss of energy range, geometric factor 17 Power cycle instruments Continuous				
develop.Drop STE, UCB augments SWENo suprathermal electrons4Internat1 support forUCB builds both; or drops STE, builds SWE or STEIncreased US cost; or no suprathermal electrons5SIT HybridsNon-hybrid solutionIncreased mass and power6SIT/3DC TOFSimpler versionIncreased mass and power7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power8LET/15um detectorsUse spare detectors from WIND/LEMTReduce deliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased use space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11 mower)Descope STEReduce deliability and possibly reduced geometrical factor12Resources mower)Some of above plus:13Resources for UCB builds SEPTIncreased risk lisolation14Remove burst memoryLoss of high time resolution science coverage and coverage and detectors16Reduce number of HET and/or LET detectorsLoss of energy range, geometric factor17Power cycle instrumentsContinuous coverage, burst science18Cost orReduce testingNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure				
3 SWE develop. Drop STE, UCB augments SWE No suprathermal electrons 4 Internat1 support for SWE or STE UCB builds both; or drops STE, builds Increased US cost; or no suprathermal electrons 5 SIT Hybrids Non-hybrid solution Increased mass and power 6 SIT/3DC TOF Simpler version Increased mass and power 7 LET/HET VLSI Use VLSI from ACE/SIS plus commercial preamp Increased mass and power resources 8 LET/15um detectors Use spare detectors from WIND/LEMT Reduced reliability and possibly reduced geometrical factor 9 Internat1 support for SEPT UCB builds SEPT Increased us cost 10 Boom develop. Body mount SWE and/or STE Reduce phase space coverage 11 (mass, power) Descope /eliminate SWE deflector Reduce phase space coverage and geometric factor 13 Persope LVPS Isolation Increased risk Isolation Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometric factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science	2		Drop STE	
develop.augments SWEelectrons4Internat1 support for SWE or STEUCB builds both; or drops STE, buildsIncreased US cost; or no suprathermal electrons5SIT HybridsNon-hybrid solutionIncreased mass and power6SIT/3DC TOFSimpler versionIncreased mass and power7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage11 (mass, power)Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPS Eliminate SEPTIncreased risk Isolation14Reduce number of HET and/or LET detectorsLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of energy range, geometric factor16Power cycle instrumentsContinuous coverage, burst science17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below i MeV/nuc19Cost orReduce testingRisk of failure				
4Internat1 support for SWE or STEUCB builds both; or drops STE, builds SWEIncreased US cost; or no suprathermal electrons5SIT HybridsNon-hybrid solutionIncreased mass and power6SIT/3DC TOFSimpler versionIncreased mass and power7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power resources8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased use space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope LVPS isolationIncreased risk isolation13Eliminate SEPT out-of-ecliptic telescopeLoss of high time resolution science15Reduce number of HET and/or LET detectorsReduce number of Loss of phase space coverage and geometric factor, and/or background rejection16Power cycle instrumentsContinuous coverage, burst science17Eliminate SEPT out-of-ecliptic telescopeLoss of phase space coverage and geometric factor, and/or background rejection16Power cycle instrumentsNo SEP composition measurements below IMeV/nuc19Cost orReduce testingRisk of failure	3		Drop STE, UCB	
support for SWE or STEdrops STE, builds SWEno suprathermal electrons5SIT HybridsNon-hybrid solutionIncreased mass and power6SIT/3DC TOFSimpler versionIncreased mass and power7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power resources8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope/Eliminate SWE deflectorReduce phase space coverage13Cost orReduce number of HET and/or LET detectorsLoss of high time resolution science coverage and geometric factor16Power cycle instrumentsContinuous coverage, geometric factor, and/or LET detectorsLoss of phase space coverage, geometric factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst scienceNo SEP composition measurements below i MeV/nuc19Cost orReduce testingRisk of failure				
SWE or STESWEelectrons5SIT HybridsNon-hybrid solutionIncreased mass and power6SIT/3DC TOFSimpler versionIncreased mass and power7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power resources8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliablilty and possibly reduced geometrical factor9Internat ¹ support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SIGationReduce phase space coverage13Eliminate SEPTLoss of high time resolution science14Remove burst telescopeLoss of phase space coverage and geometric factor15Reduce number of HET and/or LET detectorsLoss of nergy range, geometric factor, and/or add/or SEPT16Power cycle instrumentsContinuous coverage, instrumentsLoss Of Pase Space coverage, science17Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nucNo SEP composition	4			
5 SIT Hybrids Non-hybrid solution Increased mass and power 6 SIT/3DC TOF Simpler version Increased mass and power 7 LET/HET VLSI Use VLSI from ACE/SIS plus commercial preamp Increased mass and power resources 8 LET/15um detectors Use spare detectors from WIND/LEMT Reduced reliability and possibly reduced geometrical factor 9 Internat ¹ UCB builds SEPT Increased use space 10 Boom develop. Body mount SWE and/or STE Reduce phase space coverage 11 (mass, power) Descope STE Reduce phase space coverage 13 Descope/eliminate SWE deflector coverage Reduce phase space coverage 14 Remove burst Isolation Loss of high time resolution science 15 Eliminate SEPT out-of-cliptic telescope geometric factor Loss of phase space coverage and telescope geometric factor 16 Reduce number of HET and/or LET detectors Loss of phase SP2 coverage, instruments 17 Power cycle instruments No SEP composition measurements below 1 MeV/nuc 18 Eliminate SIT telescope No SEP composition				1
Image: constraint of the second sec	5			
TOFpower7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power resources8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduced angular resolution12Descope /eliminate SWE deflectorReduce phase space coverage13Descope LVPS Increased riskIncreased risk14Remove burst tlescopeLoss of high time resolution science15Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection16Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure			-	power
7LET/HET VLSIUse VLSI from ACE/SIS plus commercial preampIncreased mass and power resources8LET/15um detectorsUse spare detectors from WIND/LEMT support for SEPTReduced reliablilty and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11 (mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPS Increased riskIncreased risk14Remove burst telescopeLoss of high time resolution science15Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure	6		Simpler version	
VLSIACE/SIS plus commercial preamppower resources8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPS IsolationIncreased risk14Remove burst detectorsLoss of high time resolution science15Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection16Power cycle instrumentsContinuous coverage, burst science18Cost orReduce testingNo SEP composition measurements below 1 MeV/nuc		TOF		power
8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPS IsolationIncreased risk14Remove burst telescopeLoss of high time resolution science15Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection16Power cycle instrumentsContinuous coverage, burst science18Cost orReduce testingNo SEP composition measurements below 1 MeV/nuc	7	LET/HET		Increased mass and
8LET/15um detectorsUse spare detectors from WIND/LEMTReduced reliability and possibly reduced geometrical factor9Internat'l support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Obscope STEReduce phase space coverage13Descope/eliminate SWE deflectorReduce phase space coverage14ResourcesDescope LVPS IsolationIncreased risk15Eliminate SEPT out-of-ecliptic telescopeLoss of high time resolution science16Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Cost orReduce testingNo SEP composition measurements below 1 MeV/nuc		VLSI		power resources
detectorsfrom WIND/LEMTand possibly reduced geometrical factor9Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverageResourcesSome of above plus:11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope/eliminate SWE deflectorReduce phase space coverage14Remove burst tlsolationLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of energy range, geometric factor16Reduce number of HET and/or LET detectorsLoss of energy range, geometric al factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure			commercial preamp	
Internat1 support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope/eliminate SWE deflectorReduce phase space coverage14Remove burst tlsolationLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of energy range, geometrical factor, and/or background rejection16Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure	8			
9Internat" support for SEPTUCB builds SEPTIncreased US cost10Boom develop.Body mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope/eliminate SWE deflectorReduce phase space coverage14Remove burst IsolationLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of energy range, geometric factor, and/or background rejection16Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure		detectors	from WIND/LEMT	and possibly reduced
support for SEPTBody mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPSIncreased risk Isolation14Remove burst tout-of-ecliptic telescopeLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of energy range, geometric factor16Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT No SEP composition measurements below 1 MeV/nucNo SEP composition measurements below 1 MeV/nuc				
SEPTBody mount SWE and/or STEReduce phase space coverage10Boom develop.Body mount SWE and/or STEReduce phase space coverage11(mass, power)Descope STEReduce dangular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPSIncreased risk Isolation14Remove burst telescopeLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of energy range, geometric factor16Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT No SEP composition measurements below 1 MeV/nucNo SEP composition measurements below 1 MeV/nuc	9		UCB builds SEPT	Increased US cost
10 Boom develop. Body mount SWE and/or STE Reduce phase space coverage 11 (mass, power) Descope STE Reduced angular resolution 12 Descope STE Reduce phase space sWE deflector 13 Descope LVPS Increased risk Isolation 14 Remove burst telescope Loss of high time resolution science 15 Eliminate SEPT out-of-ecliptic telescope Loss of energy range, geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing				
develop.and/or STEcoverageResourcesSome of above plus:11(mass, power)Descope STEReduced angular resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPSIncreased risk Isolation14Remove burst IsolationLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of phase space coverage and geometric factor16Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure	10		De des menuet CWE	Deduce altered and a
ResourcesSome of above plus:11(mass, power)Descope STEReduced angular resolution12Descope/eliminate SWE deflectorReduce phase space 	10			
11 (mass, power) Descope STE Reduced angular resolution 12 Descope/eliminate SWE deflector Reduce phase space coverage 13 Descope LVPS Increased risk 14 Remove burst Loss of high time resolution science 15 Eliminate SEPT Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments No SEP composition measurements below 1 MeV/nuc 18 Cost or Reduce testing Risk of failure				ě
power)resolution12Descope/eliminate SWE deflectorReduce phase space coverage13Descope LVPS Increased riskIncreased risk14Remove burst memoryLoss of high time resolution science15Eliminate SEPT out-of-ecliptic telescopeLoss of phase space coverage and geometric factor16Reduce number of HET and/or LET detectorsLoss of energy range, geometrical factor, and/or background rejection17Power cycle instrumentsContinuous coverage, burst science18Eliminate SIT telescopeNo SEP composition measurements below 1 MeV/nuc19Cost orReduce testingRisk of failure	11			
SWE deflector coverage 13 Descope LVPS Increased risk 14 Remove burst Loss of high time resolution science 15 Eliminate SEPT Loss of phase space coverage and telescope 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure		· · ·		resolution
13 Descope LVPS Increased risk 14 Remove burst Loss of high time resolution science 15 Eliminate SEPT out-of-ecliptic Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	12			
14 Isolation 14 Remove burst memory Loss of high time resolution science 15 Eliminate SEPT out-of-ecliptic telescope Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	10			<u> </u>
14 Remove burst memory Loss of high time resolution science 15 Eliminate SEPT out-of-ecliptic telescope Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	13			Increased risk
memory resolution science 15 Eliminate SEPT out-of-ecliptic telescope Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	14			Loss of high time
15 Eliminate SEPT out-of-ecliptic telescope Loss of phase space coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	14			
16 out-of-ecliptic telescope coverage and geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	15			
telescope geometric factor 16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	15			
16 Reduce number of HET and/or LET detectors Loss of energy range, geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure				
HET and/or LET detectors geometrical factor, and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	16			
17 Adetectors and/or background rejection 17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	-			
17 Power cycle instruments Continuous coverage, burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure			detectors	
instruments burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure				rejection
instruments burst science 18 Eliminate SIT telescope No SEP composition measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure	17		Power cycle	Continuous coverage,
telescope measurements below 1 MeV/nuc 19 Cost or Reduce testing Risk of failure				burst science
19 Cost or Reduce testing Risk of failure	18		Eliminate SIT	
19 Cost or Reduce testing Risk of failure			telescope	
č	19	Cost or	Reduce testing	
		Schedule	Ŭ	

The descopes in Table D.3 also include options that reduce mass and power resource requirements, so that growth in these areas can be contained. Currently all reserves (mass, power, and money) are being held by Project, so Project is part of all trades, and will release its reserves as it sees fit. Should any of these reserves be passed on to the instrument team to control, they will be held by the Project Manager, and only released at a rate appropriate to the level of maturity of the design level of completion of the project. The CDR is a crucial time for making descopes required to keep the development on track and be able to make any significant savings.

D.4 Project Schedule

The following pages show schedules for development of IMPACT at the various CoI institutions. These schedules have been integrated, and are linked by deliverable hardware and documentation. The first schedule is an overview of the phases of the program and the activities going on in each phase. The following pages show the top-level schedule for each institution or major development item. Major system milestones are mostly on the UCB and I&T schedules. The schedules are available in Microsoft Project 98 format from the Project Manager for further analysis at a lower level.

These schedules contain margin included in each task element. In addition, there are options the Program Manager can use to reorganize the schedule as needed; for example some work that is listed serially can be done in parallel if required. Delivery to the Spacecraft is shown around July 2003 (on the I&T schedule), which is early in the instrument integration interval; the ability to deliver later if necessary provides more hidden slack.

The Project Manager shall maintain these linked schedules throughout the development program. CoIs will provide institutional schedules and status monthly to the PM so that he can coordinate the various activities and reorganize or prioritize work as required to maintain adequate schedule slack. The integrated schedule will then be provided to Project.

D.5 ITAR-Related Issues and Plans

In view of current ITAR restrictions and concerns, and the involvement in IMPACT of hardware CoInvestigators from the University of Kiel, ESTEC, and Max Planck Institut fuer Aeronomie (in SEP/SEPT and SEP/SIT, respectively), we have established procedures for team interactions using the guidelines of both the Project and of the various institutional members involved. The content of the ITAR-related technical interactions for IMPACT is described in NASA Letters of Agreement written by the Project office at GSFC in consultation with UCB.

In brief, the SEP/SEPT instrument is being provided in its entirety by the University of Kiel and ESTEC. The instrument will be imported to GSFC for integration with the IMPACT SEP package and eventually with the STEREO spacecraft at APL. It is expected that the Project and GSFC will provide the necessary import licensing for SEPT as described in the attached LOAs with the German agency DLR and with ESTEC. The SEP/SIT contribution from the Max Planck Institute is a time-of-flight circuit that will be integrated into the SEP/SIT instrument built by the University of Maryland. It is also expected that the Project and GSFC will provide the necessary licensing for the information and hardware exchange described in the attached LOA with the German agency DLR that pertains to SEP/SIT. Such licensing has previously been provided by the GSFC Project Offices on a large

number of international collaborations of this nature. We expect that precedent will apply to STEREO. Our SEP lead CoInvestigator, Dr. Tycho von Rosenvinge, is located at GSFC and will act as the local signatory for these licenses for IMPACT imports as required by the GSFC licensing office. Our remaining foreign contribution, from CESR/CNRS in France, similarly involves delivery of the completed SWEA box that needs only to meet the specifications for the science and the interfaces to the IMPACT boom/mast and IDPU. The SWEA analyzer will be delivered to Berkeley using import licensing, preferrably provided by the GSFC Project Office, but if not UCB will handle the licensing.

The procedures being followed by non-NASA institutions within the IMPACT Team are as follows, by hardware-providing institution:

UCB: At UCB, consultation with the University of California Office of the President (UCOP), in the presence of their legal counsel, has led to draft guidelines for UCB Space Sciences Laboratory participation in flight projects. These guidelines will hopefully be made official during Phase B. The level of foreign CoI interaction involved for IMPACT, according to UCOP views, is not of the scope or type requiring a TAA. IMPACT falls within the traditional fundamental research definition wherein exchanges involve what is available in the public domain. Indeed, it is University of California policy not to support what is considered exclusive and/or classified research. We have been advised not to disseminate materials given to us that are marked or otherwise specified as restricted to US citizens only. The balance of our interactions are in the purview of open literature, open conference discussions and presentations, and open workshops. PI and/or Project Manager communications with hardware contributors to IMPACT are conducted at a high level in person, by telephone, email, and web-sites, to specify requirements needed for delivery of an IMPACT system-compatible unit, and contain no technical information that is not widely available, including on unrestricted portions of the JHUAPL Project website. The University of California Office of the President will handle our import licensing in the undesirable event that the GSFC Project Office defers that task to us.

UMD: The UMD policies parallel those of UCB. Technical information exchanged is of the nature of specifications to make the hardware compatible. It is expected that GSFC will handle the import licensing for the UMD for the Max Planck Institute contribution to the SEP/SIT instrument, with assistance from IMPACT SEP lead CoI von Rosenvinge at GSFC.

CalTech: Caltech is generally using JPL advisors on ITAR issues, and as such, is planning to follow the NASA Center model of obtaining a TAA. Institutional uncertainties on ITAR response at Caltech has impeded Caltech, and thereby the IMPACT SEP subsystem development, from moving forward during the Phase A Study period. The withdrawal of Waseda University from the IMPACT SEP investigation leaves the scope of the anticipated TAA covering interactions only with the University of Kiel and ESTEC. As this TAA application has not yet been submitted, we expect further delays in Caltech's contributions, and resulting risk to the IMPACT Phase B,C,D schedule. We are aware that the NASA policies and response to ITAR matters will change over the next few months as NASA Headquarters reviews the impact of ITAR on NASA's science missions. There is also congressional activity on ITAR and both Universities' and NASA responses that are likely to ease the communications problems during Phase B.

D.6 IMPACT Concerns

A list of the top IMPACT team concerns follows. These concerns are further discussed in the instrument sections.

- 1. SEP FOV. Getting the SEP FOV clear has been a major undertaking in Phase A, and while we have made a lot of progress and are close to an adequate solution, we are not quite there yet. Proposed new spacecraft configuration changes must be evaluated against all IMPACT fields of view.
- 2. Schedule problems. The current project schedule is shorter in Phase B/C/D than what we proposed to. While it is not impossible to meet the new schedule, it does impose constraints that add risk against system reliability and cost. This situation has been exacerbated by delays in Phase A due to ITAR, delays in funding, extra work required by the loss of the Waseda contribution, and extra work required in clearing the SEP FOV (with associated changes in the SEP configuration).
- 3. Electro-Static Cleanliness (ESC). The treatment of the solar arrays is still under study. In addition, other non-conducting surfaces must be identified and their ESC impact evaluated. Finding thermal control finishes that meet the ESC requirements is a problem that should not be put off too long.
- 4. Magnetics. In order to meet the magnetics goal for the spacecraft without adding significantly to the cost, magnetics issues must be considered early in the design process, in the selection of materials and processes, and in the procurement of subsystems. The reaction wheels and the separation system are two areas that have been identified to date as having potential magnetics problems.
- 5. Thermal. No thermal analysis has yet been completed for IMPACT. This represents a risk against the power budget for operational heaters.
- 6. Mass and Power budget. The mass budget is close to the Project allocation with the exception of the SEP and SEPT-NS bracket allocation. The power budget is in some trouble. We hope to get an increased power allocation from Project when they have completed the system-level power study. If more power is not available, the system will have to

be redesigned to allow for power cycling of some subsystems, with associated loss in science. Also, resource estimates assume aggressive optimization, which has impacts on cost and reliability.

- 7. STE and SEPT aperture covers. A result of the Phase A Study is that these detectors require inflight reclosable covers. We are studying solutions to this problem, which will involve some small mass increase not yet budgeted.
- 8. SWEA needs to be removed from the spacecraft and returned to UCB for post-environmental functional tests. No adequate test can be performed at APL.

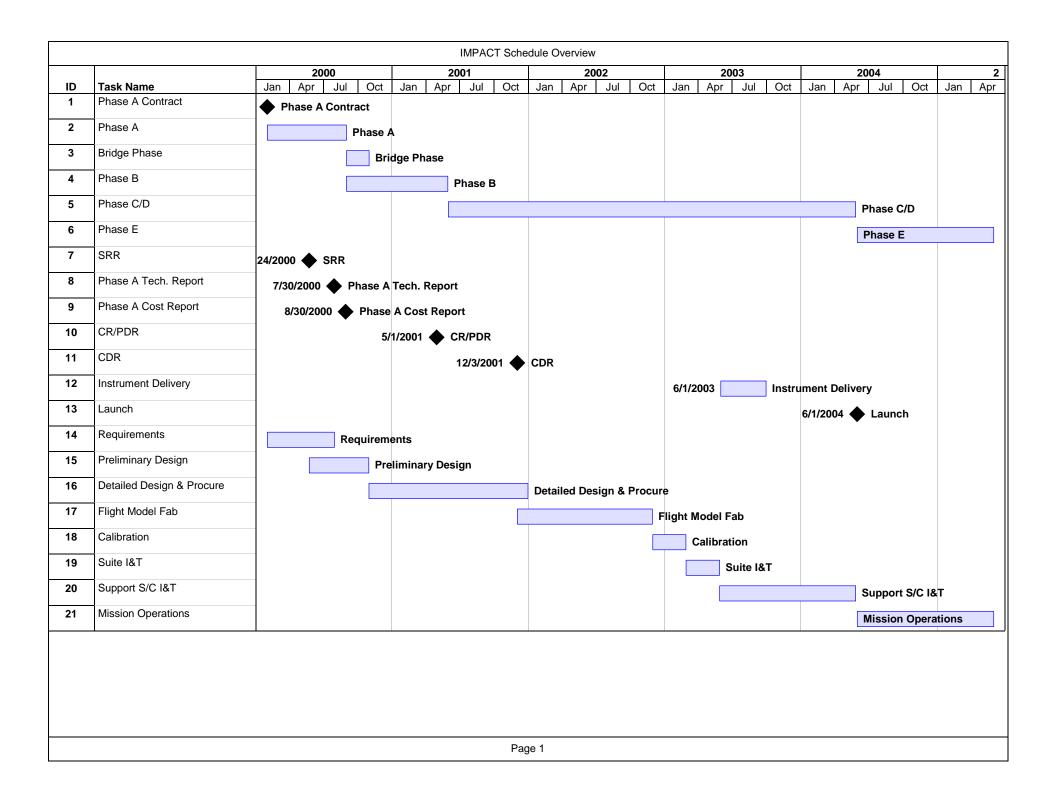
D.7 Education/Public Outreach

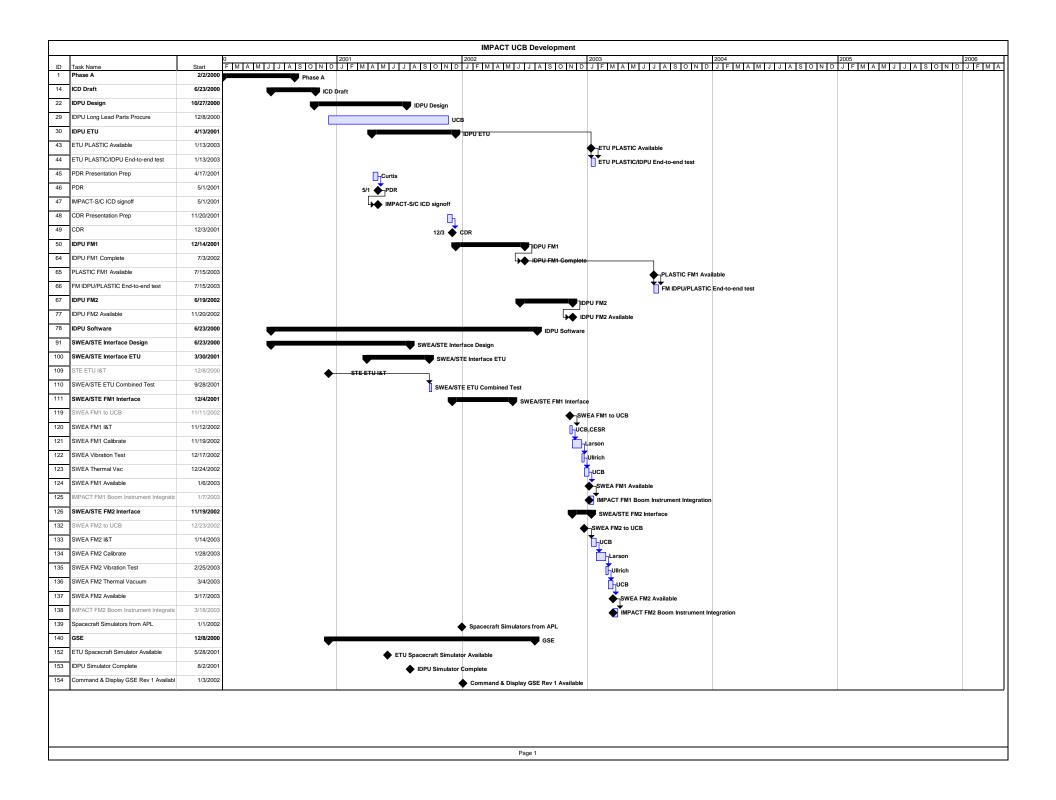
In the original IMPACT proposal, our E/PO effort did not foresee the centralized organization that Project has since created at GSFC under Leslie Cusick. Our activities to date have thus focused on redefining our activities in light of this new leadership at GSFC, and carrying forward where we can under the minimal funding available for IMPACT E/PO in these early phases of the mission. The following activities that occurred during the Phase A period were not included in the originally proposed E/PO plan. These have been made possible through leveraging existing E/PO infrastructure within the UCB SEGway Program under the leadership of IMPACT E/PO coordinator Nahide Craig.

D.7.1 Website Development

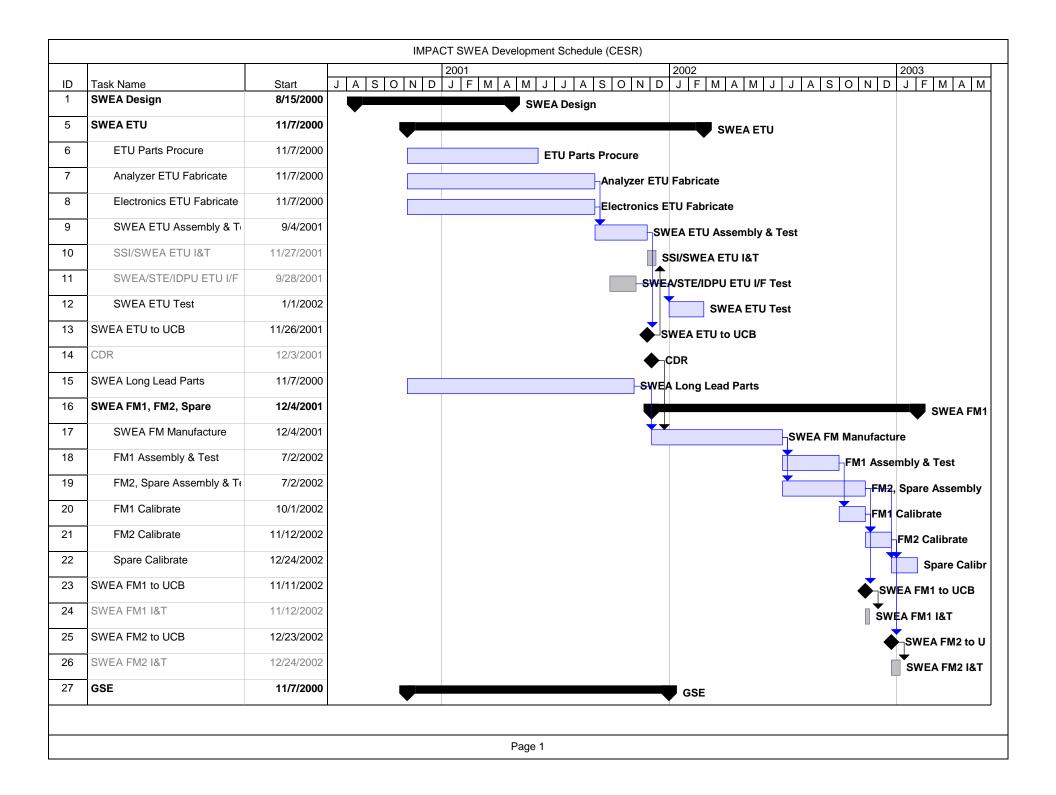
We have started to design the IMPACT EPO website at http://cse.ssl.berkeley.edu and update the News and Events as appropriate. Also, we are linked to the Sun-Earth Connection Forum on-line calendar of the Mission E/PO Project timelines. (http://sunearth.ssl.berkeley.edu/scientists/webEPOdates.htm and the Center for Science Education Site http://cse.ssl.berkeley.edu under MISSIONS).

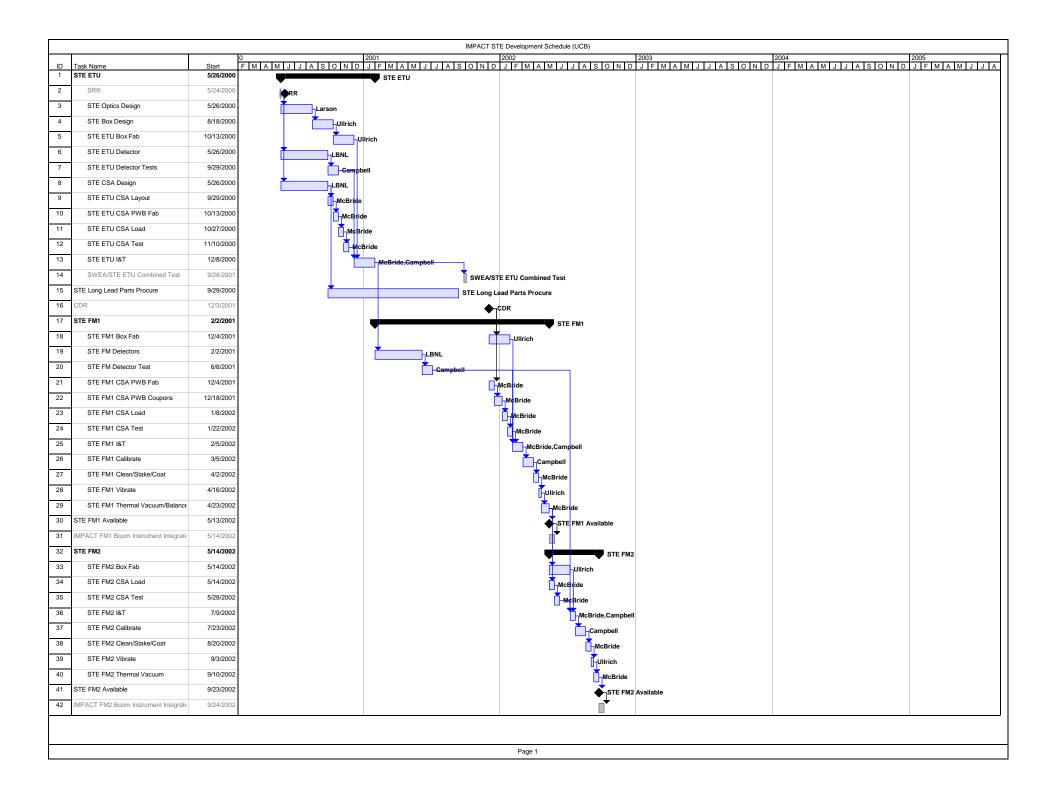
D.7.2 K-12 Education

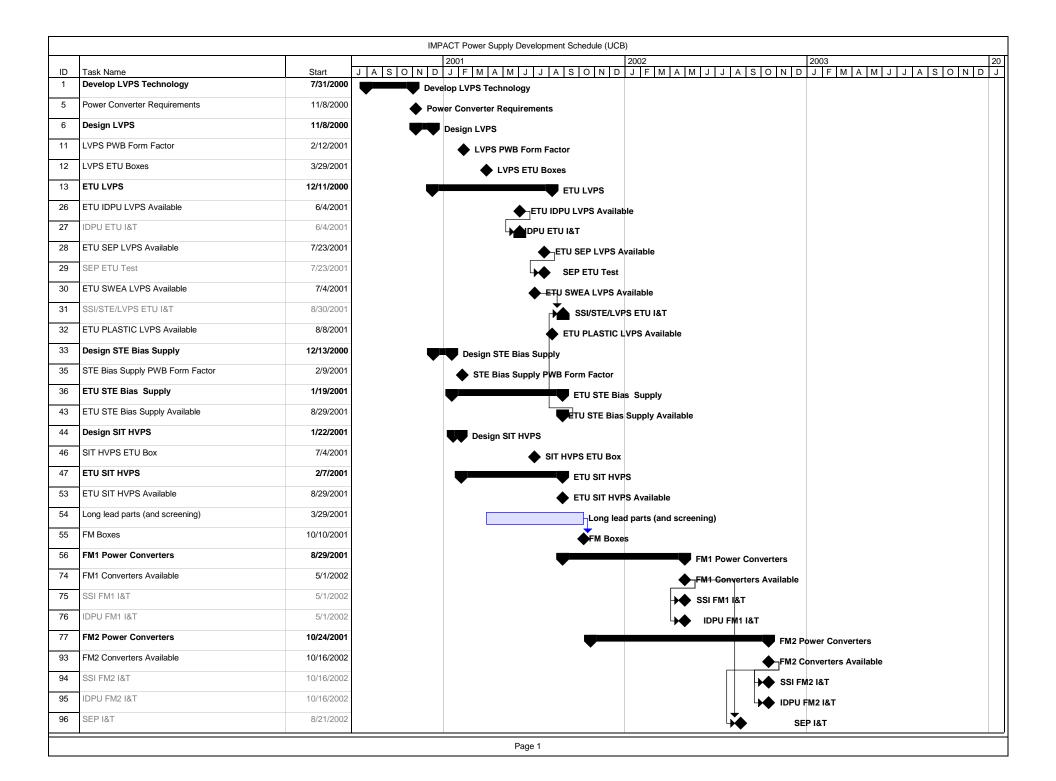

Formal Education: In a Lawrence Hall Science two week Summer 2000 Program titled "Solar Astronomy Camp", Nahide Craig introduced the STEREO mission to 6-9th graders and discussed the STEREO Poster.

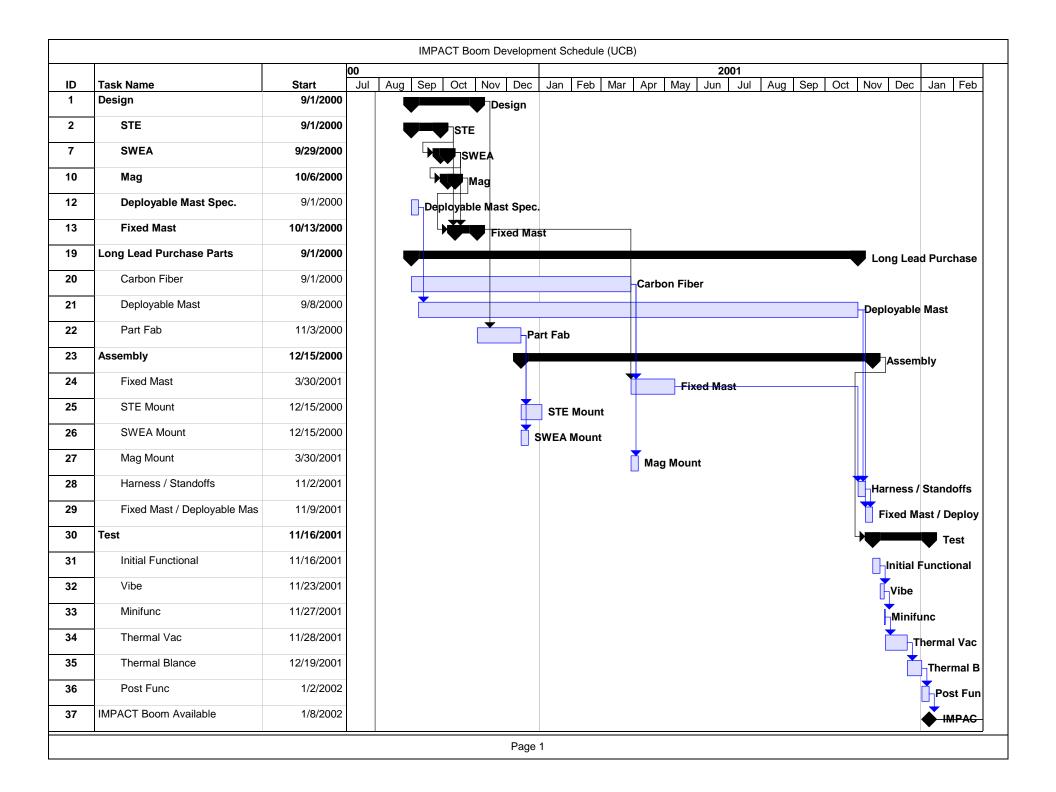

D.7.3 Coordination Plans

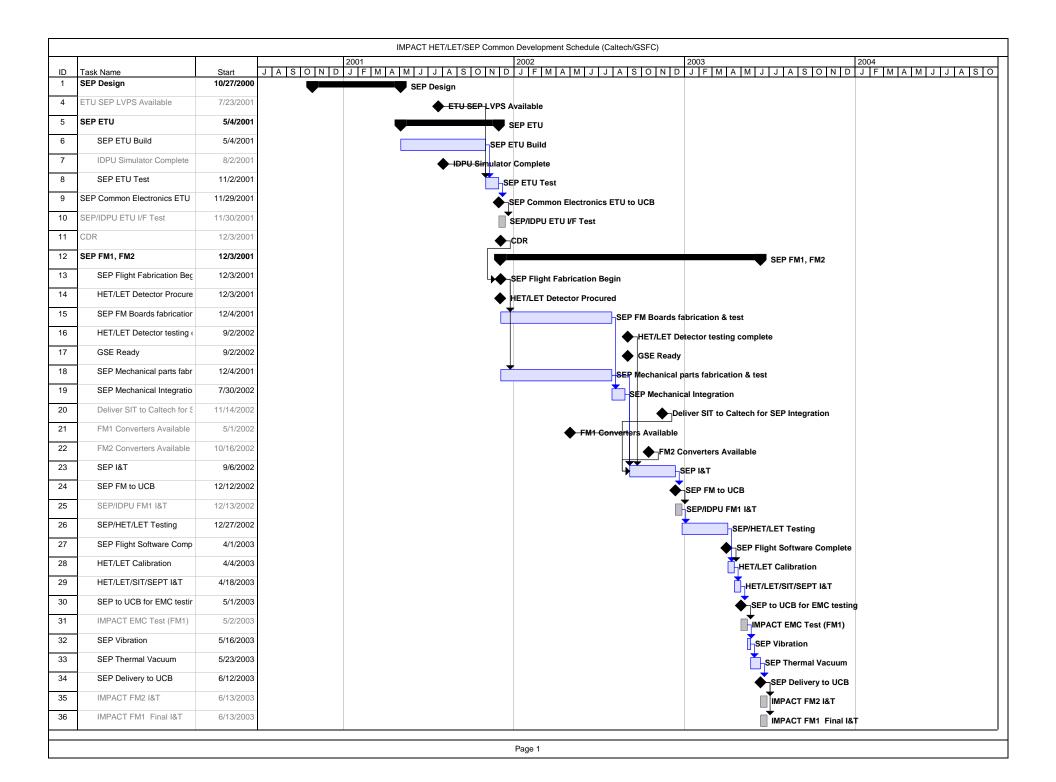

Nahide Craig has discussed with Leslie Cusick the coordination of efforts with the other STEREO E/PO partners, and plans to hold a splinter session for E/PO at the December 2000 STEREO Meeting in Berkeley to plan future joint activities.

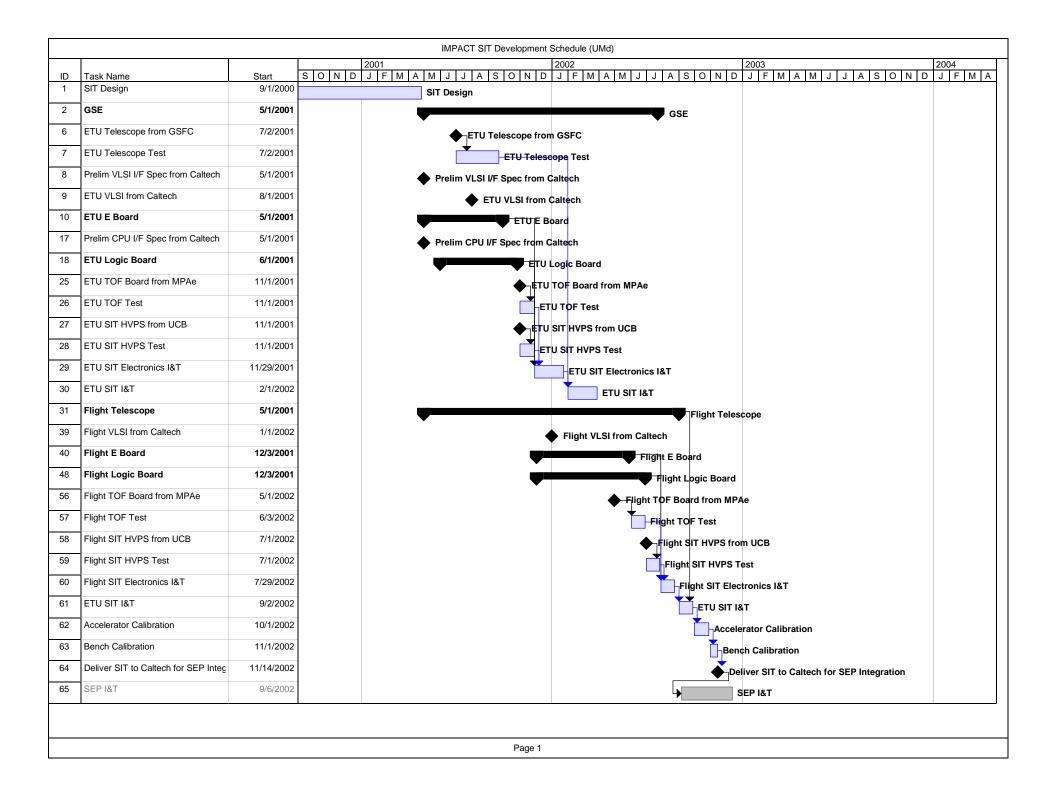

D.7.4 Public Outreach


IMPACT E/PO representatives intend to participate in the total Solar Eclipse Web cast 2001 as part of the Live@TheExploratorium program that reaches thousands of visitors on-site at the museums and hundreds of thousands on-line through Internet. By our participation in this event, both STEREO and IMPACT gain visibility. STEREO/IMPACT PI Janet Luhmann published a popular article "Space Weather: Physics and Forecasts" in the British *Physics World* July 2000 issue.









	IMPACT Boom Development Schedule (UCB)																					
			00				· · ·		2001 c Jan Feb Mar Apr May Jun Jul Aug Sep													
ID	Task Name	Start	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan Fe	эb
38	IMPACT FM2 Boom Instrument In	3/18/2003																				
39	IMPACT FM1 Boom Instrument In	1/7/2003																				
	· · · ·																					
								Page	2													_

ID Trait Nome Stat 2004 IF 2006 IF 2006 IF 2006 IF 2007 IF br>IF <th2007 IF <th2007 I</th2007 </th2007 </th2007 				IMPACT Suite Integra	tion & Test (UCB)
1 MPACT FM I IAT 12/13/2002 2 SEP FM to UCB 1/2/12/2002 3 IDPU FM 1 Complete 7/3/2002 4 SEP/MED/U FM I IAT 12/13/2002 5 SEP/MET/LET Testing 12/27/2002 6 STE FM1 Available 1/12/13/2002 7 SWEA FM1 Available 1/12/13/2002 7 SWEA FM1 Available 1/12/2003 8 IMPACT FM1 Boon Instrument Integration 10 IMPACT FM1 Boon Instrument Integration 11 SWEA/STE/MAG/IDPU FM1 test 1/2/12/003 12 SEP to UCB for EMC testing 5/1/2/2003 13 IMPACT FM1 Boon Instrument Integration 5/1/2/2003 14 SEP Delivery to UCB of EMC testing 6/1/2/2003 15 SEP Delivery to UCB of EMC testing 6/1/2/2003 16 IMPACT FM1 Emi Bach Ising			0		
2 SEP FM to UCB 12/12/2002 3 IDPU FM1 Complete 7/3/2002 4 SEP/IDPU FM1 I&T 12/13/2002 5 SEP/IMETALET Tosting 12/27/2002 6 STE FM1 Available 5/13/2002 7 SWEA FM1 Available 1/8/2002 8 IMPACT EM1 Available 1/8/2002 9 MAG FM1 Available 1/8/2002 10 MPACT FM1 Available 1/8/2002 11 SWEA/STE/MAG/IDPU FM1 Test 1/2/12/003 12 SEP 10 UCB for EMC testing 5/1/2003 13 MPACT FM1 Available 5/1/2003 14 SEP Delivery to UCB 6/13/2003 15 SEP Delivery to UCB 6/13/2003 16 MPACT FM2 I&T 3/13/2003 17 IMPACT FM2 I&T 3/13/2003 18 STE FM2 Available 3/17/2003 19 SWEA FM2 Available 3/13/2003 20 IMAC FM2 Available 3/13/2003 21 IMPACT FM2 I&T 3/13/2003				J F M A M J J A S O N D	
3 IDPU FM1 Complete 7/3/2002 4 SEPJDPU FM1 I&T 1/2/3/2002 5 SEPJHET/LET Testing 1/2/7/2002 6 STE FM1 Available 5/13/2002 7 SWEA FM1 Available 1/8/2002 9 MAG FM1 Available 1/8/2002 10 IMPACT FM1 Available 1/8/2002 11 SWEA FM1 Available 1/8/2003 12 SEP to UCB for EMC testing 6/1/2003 13 IMPACT FM1 Boom Instrument Integration 5/16/2003 14 SEP to UCB for EMC testing 6/1/2003 15 SEP belivery to UCB 6/1/2003 16 IMPACT FM1 Final I&T 5/16/2003 17 IMPACT FM2 IAIT 5/16/2003 18 STE FM2 Available 9/17/2003 19 SVEA FM2 Available 9/17/2003 20 MAG FM2 Available 9/12/2002 21 IMPACT FM2 IAIT 3/18/2003 22 IDPU FM2 Available 9/23/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 IAIT 6/13/2003 <th>2</th> <th>SEP FM to UCB</th> <th>12/12/2002</th> <th></th> <th></th>	2	SEP FM to UCB	12/12/2002		
4 SEP/IDPU FM1 I&T 12/13/2002 5 SEP/INET/LET Testing 12/27/2002 6 STE FM1 Available 5/13/2002 7 SWEA FM1 Available 1/8/2003 8 IMPACT Boom Available 1/8/2003 9 MAG FM1 Available 1/8/2003 10 IMPACT FM1 Boom Instrument Ints 1/7/2003 11 SWEA/STE/MAG/IDPU FM1 Test 1/2/1/2003 12 SEP to UCB for EMC testing 5/1/2003 13 IMPACT EMC Test (FM1) 5/2/2003 14 SEP Vibration 5/1/2003 15 SEP Delivery to UCB 6/1/22003 16 IMPACT FM1 Isal X 6/1/22003 17 IMPACT FM2 LatT 3/18/2003 18 STE FM2 Available 9/2/2002 20 MAG FM2 Available 9/2/2002 21 IMPACT FM2 Boom Instrument Integration	3	IDPU FM1 Complete	7/3/2002		
5 SEP/HET/LET Testing 12/27/2002 6 STE FM1 Available 5/13/2002 7 SWEA FM1 Available 1/6/2003 8 IMPACT Boom Available 1/8/2002 9 MAG FM1 Available 4/25/2002 10 IMPACT FM1 Boom Instrument Integration 1/17/2003 11 SWEA/STE/MAG/IDPU FM1 rest 1/2/2003 12 SEP to UCB for EMC testing 5/12/2003 13 IMPACT Ext (FM1) 5/2/2003 14 SEP Vibration 5/16/2003 15 SEP Delivery to UCB 6/13/2003 16 IMPACT FM2 I&T 3/18/2003 17 IMPACT FM2 Available 3/17/2003 18 STE FM2 Available 3/17/2003 20 MAG FM2 Available 3/17/2003 21 IMPACT FM2 Boom Instrument Integration 1/12/2002 22 IDPU FM2 Available 3/17/2003 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003 22 IDPU FM2 Available 1/12/2002 23 SWEA/STE/MAG/IDPU FM2 Test	4	SEP/IDPU FM1 I&T	12/13/2002		
6 STE FM1 Available 5/13/2002 7 SWEA FM1 Available 1/6/2003 8 IMPACT Boom Available 1/8/2002 9 MAG FM1 Available 4/25/2002 10 IMPACT FM1 Boom Instrument Int 1/7/2003 11 SWEA/STE/MAG/IDPU FM1 Test 1/21/2003 12 SEP to UCB for EMC testing 5/1/2003 13 IMPACT EMC Test (FM1) 5/22/2003 14 SEP Vibration 5/16/2003 15 SEP Delivery to UCB 6/12/2003 16 IMPACT FM1 IslaT 6/13/2003 17 IMPACT FM2 IAV 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 9/23/2002 11 IMPACT FM2 IAV 3/18/2003 12 IMPACT FM2 Available 9/23/2002 16 IMPACT FM2 Available 9/23/2002 17 IMPACT FM2 Available 9/23/2002 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 9/23/2002 20 MAG FM2 Available 8/25/2002 <	5	SEP/HET/LET Testing	12/27/2002		
7 SWEA FM1 Available 1/6/2003 8 IMPACT Boom Available 1/8/2002 9 MAG FM1 Available 4/25/2002 10 IMPACT FM1 Boom Instrument Integration 11 SWEA/STE/MAG/IDPU FM1 Test 1/21/2003 12 SEP to UCB for EMC testing 5/1/2003 13 IMPACT EMC Test (FM1) 5/2/2003 14 SEP Vibration 5/16/2003 15 SEP Delivery to UCB 6/12/2003 16 IMPACT FM1 Final I&T 6/13/2003 17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Integration SWEA/STE/MAG/IDPU FM2 Test 21 IMPACT FM2 Boom Instrument Integration SWEA/STE/MAG/IDPU FM2 Test 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003 24 IMPACT FM2 I&T 6/13/2003	6	STE FM1 Available	5/13/2002		
 IMPACT Boom Available MAG FM1 Available MAG FM1 Available MAG FM1 Available MPACT FM1 Boom Instrument Integration SWEA/STE/MAG/IDPU FM1 Test 1/2/2003 IMPACT EMC testing 5/1/2003 SEP to UCB for EMC testing 5/1/2003 SEP Delivery to UCB 6/1/2003 SEP Available 9/23/2002 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 SWEA/STE/MAG/IDPU FM2 Test 5/1/2004 	7	SWEA FM1 Available	1/6/2003		
 MAG FM1 Available MAG FM1 Available MAG FM1 Available MAG FM1 Available MPACT FM1 Boom Instrument Integration SWEA/STE/MAG/IDPU FM1 Test MPACT FM2 Available MPACT FM1 Final I&T SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to UCB SEP to U	8	IMPACT Boom Available	1/8/2002		
10 IMPACT FM1 Boom Instrument Integration 11 SWEA/STE/MAG/IDPU FM1 Test 1/21/2003 12 SEP to UCB for EMC testing 5/1/2003 13 IMPACT FM1 Ext 5/2/2003 14 SEP Vibration 5/1/6/2003 15 SEP Delivery to UCB 6/13/2003 16 IMPACT FM1 Final I&T 6/13/2003 17 IMPACT FM2 IaxT 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 3/18/2003 21 IMPACT FM2 Boom Instrument Integration 22 IDPU FM2 Available 3/18/2003 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/120/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/120/2002 24 IMPACT FM2 I&T 6/13/2003	9	MAG FM1 Available	4/25/2002		
11 SWEA/STE/MAG/IDPU FM1 Test 1/21/2003 12 SEP to UCB for EMC testing 5/1/2003 13 IMPACT EMC Test (FM1) 5/2/2003 14 SEP Vibration 5/16/2003 15 SEP Delivery to UCB 6/12/2003 16 IMPACT FM2 I&T 3/18/2003 17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 20 MAG FM2 Available 3/17/2003 20 MAG FM2 Available 3/18/2003 21 IMPACT FM2 Ratinable 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	10	IMPACT FM1 Boom Instrument Inte	1/7/2003		
12 SEP to UCB for EMC testing 5/1/2003 13 IMPACT EMC Test (FM1) 5/2/2003 14 SEP Vibration 5/16/2003 15 SEP Delivery to UCB 6/12/2003 16 IMPACT FM1 Final I&T 6/13/2003 17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 20 MAG FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Int 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	11	SWEA/STE/MAG/IDPU FM1 Test	1/21/2003		
14 SEP Vibration 5/16/2003 15 SEP Delivery to UCB 6/12/2003 16 IMPACT FM1 Final I&T 6/13/2003 17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Intt 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	12	SEP to UCB for EMC testing	5/1/2003		
15 SEP Delivery to UCB 6/12/2003 16 IMPACT FM1 Final I&T 6/13/2003 17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Intt 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	13	IMPACT EMC Test (FM1)	5/2/2003		HMPACT EMC Test (FM1)
16 IMPACT FM1 Final I&T 6/13/2003 17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Integration 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	14	SEP Vibration	5/16/2003		SEP Vibration
17 IMPACT FM2 I&T 3/18/2003 18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Int 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	15	SEP Delivery to UCB	6/12/2003		SEP Delivery to UCB
18 STE FM2 Available 9/23/2002 19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Intel 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	16	IMPACT FM1 Final I&T	6/13/2003		IMPACT FM1 Final I&T
19 SWEA FM2 Available 3/17/2003 20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Inte 3/18/2003 22 IDPU FM2 Available 11/20/2002 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	17	IMPACT FM2 I&T	3/18/2003		IMPACT FM2 I&T
20 MAG FM2 Available 8/28/2002 21 IMPACT FM2 Boom Instrument Inte 3/18/2003 22 IDPU FM2 Available IMPACT FM2 Boom Instrument Integration 23 SWEA/STE/MAG/IDPU FM2 Test 4/1/2003 24 IMPACT FM2 I&T 6/13/2003	18	STE FM2 Available	9/23/2002		STE FM2 Available
21 IMPACT FM2 Boom Instrument Integration 22 IDPU FM2 Available 23 SWEA/STE/MAG/IDPU FM2 Test 24 IMPACT FM2 I&T 6/13/2003	19	SWEA FM2 Available	3/17/2003		SWEA FM2 Available
22 IDPU FM2 Available 23 SWEA/STE/MAG/IDPU FM2 Test 24 IMPACT FM2 I&T 6/13/2003	20	MAG FM2 Available	8/28/2002		MAG FM2 Available
23 SWEA/STE/MAG/IDPU FM2 Test 24 IMPACT FM2 I&T 6/13/2003	21	IMPACT FM2 Boom Instrument Inte	3/18/2003		MPACT FM2 Boom Instrument Integration
24 IMPACT FM2 I&T 6/13/2003	22	IDPU FM2 Available	11/20/2002		♦ IDPU FM2 Available
	23	SWEA/STE/MAG/IDPU FM2 Test	4/1/2003		
	24	IMPACT FM2 I&T	6/13/2003		
	25	IMPACT Delivery	6/26/2003		MPACT Delivery
Page 1					

STEREO IMPACT Meetings Revision 2000-7-12 David Curtis

Meeting	Date	Location
Peer Review #1, System	October 2000	U.C.Berkeley
Peer Review #2,	December 2000	U.C.Berkeley
IMPACT Team Meeting	December 12 2000	U.C.Berkeley
SWG#3	December 13,14 2000	U.C.Berkeley
Peer Review #2	January 2001	U.C.Berkeley
SWEA/STE/IDPU		
Peer Review #3 SEP	February 2001	GSFC
Peer Review #4 Mechanical	March 2001	U.C.Berkeley
Peer Review #5 Software	April 2001	U.C.Berkeley
PDR	May 2001	APL
SWG#4 + IMPACT Team	June 2001	GSFC (Combine with PDR?)
CDR	December 2001	APL
SWG#5 + IMPACT Team	December 2001	UNH (Combine with CDR?)
SWG#6 + IMPACT Team	June 2002	GSFC
SWG#7 + IMPACT Team	December 2002	NRL
SWG#8 + IMPACT Team	June 2003	GSFC
Delivery to Spacecraft	July 2003	APL
SWG#9 + IMPACT Team	December 2003	Paris
SWG#10 + IMPACT Team	June 2004	KSC
Launch	June 2004	KSC