

IMPACT Instrument Suite

Experiment	Instrument	Measurement	Energy or Mag. field range	Time Res.	Beacon Time Res. (*)	Instrument provider
SW	STE	Electron flux and anistropy	2-100 keV	16 s	2D x 3E, 60s	UCB (Lin)
	SWEA	3D electron distrib., core & halo density, temp. & anisotropy	~0-3 keV	3D=1 min 2D=8s Mom.=2s	Moments, 60s	CESR (Sauvaud) + UCB (Lin)
MAG	MAG	Vector field	±500nT, ±65536 nT	1/4 s	60s	GSFC (Acuna)
SEP	SIT	He to Fe ions	0.03-2 MeV/nuc	30 s	3S x 2E, 60s	U. of Md. (Mason)
		³ He	0.15-0.25 MeV/nuc	30 s		+ MPAE (Korth) + GSFC (von Rosenvinge)
	SEPT	Diff. electron flux	20-400 keV	1 min	3E, 60s	U. of Kiel (Mueller-
		Diff. proton flux	20-7000 keV	1 min	3E, 60s	Mellin)
		Anistropies of e,p	As above	15 min		+ ESTEC (Sanderson)
	LET	Ion mass 2-28 & anisotropy	1.5-40 MeV/nuc	1-15 min.	2S x 2E, 60s	Caltech (Mewaldt) + GSFC (von Rosenvinge)
		³ He ions flux & anistropy	1.5-1.6 MeV/nuc	15 min.	1E, 60s	+ JPL (Wiedenbeck)
		H ions flux & anistropy	1.5-3.5 MeV	1-15 min.	1E, 60s	
	HET	Electrons flux	1-8 MeV	1-15 min.	1E, 60s	GSFC (von Rosenvinge)
		Н	13-100 MeV	1-15 min.	1E, 60s	+ Caltech (Mewaldt)
		He	13-100 MeV	1-15 min.	1E, 60s	+ JPL (Wiedenbeck)
		³ He	15-60 MeV/nuc	15 min		
	SEP Common					Caltech (Mewaldt) + GSFC (von Rosenvinge)
IMPACT Common	IDPU (+Mag Analog)					UCB (Curtis)

Science Summary

IMPACT Science Summary

(*) E=Energies, S=Species, D=directions

IMPACT Instrument Locations on the Spacecraft

IMPACT Instrument Locations on the Spacecraft

Behind Spacecraft

Boom Suite (Stowed)

SWEA / STE

MAG

SEP HET/LET/SIT/Common Electronics

Resource Allocations

Instrument	Mass	Mass	Mass Margin %	Power	Power	Power	hne
eco.	CDE, KY	NIE, KG	Wargin, 70	CDE, W	INTE, W	Margin, 76	ups
	0.75			0.77			320
LE I	0.75			0.77			320
	0.00			0.25			120
RED Common Eloo	0.00			0.35			120
SEP COMMON LIEC.	0.20			0.00			
SEP LVFS	0.20			2.12			440
SEP Main Total	4.13			3.77			440
SIT	1.23			1.27			240
SEPT-E	0.52			0.50			30
SEPT-NS	0.52			0.50			30
SEP-NS Bracket	0.27						
SEP Blankets	0.15						
SEP Grand Total	6.82	8.09	16%	6.05	7.40	18%	740
BOOM-							
SWFA:							
SWEA (CESR)	1 21			0.54			30/
SWEA/STE I/F	0.30			0.30			
SWEA/STE LVPS	0.00			0.63			
SWEA Total	1.71			1.47			394
STE (STE-D)	0.35			0.10			64
SWEA Op Htr				0.50			
STE Op Htr				0.25			
MAG Sensor	0.25						192
Mag Op Htr				0.50			
SWEA/STE/MAG Blankets	0.10						
Sunward STE (STE-U)	0.35			0.10			
Boom Harness	0.83						
Boom	8.00						
Boom Totals	11.59	14.20	18%	2.32	3.50	34%	650
IDPU: Maa Card	0.20			0.20			
Mag Card	0.30			0.38			
DIB Cald (STE)	0.30			0.20			
S/C Interface (on DBI Le	0.30			0.80			
	aiu) 0.20			1.07			
Mag Heater Control	0.20			1.07			
	0.07						
IDPU Total:	2.12	2.54	17%	3.55	4.30	18%	164
Burst Telemetry							546
Harness (average of A&B)	1.24	1.47	16%				
TOTAL	21.76	26.30	17%	11.91	15.20	22%	2100

Other Resource Iss			
Actuator Firing Current	Туре	Current@28V	Time
SWEA Cover	TiNi P5-403	.75A	<100ms
SIT Cover	TiNi P5-403	.75A	<100ms
SEPT Covers	TiNi P5-403	.75A	<100ms
STE Cover	SMA	350mA	2s
BOOM Release	TiNi P5-405	.75A	<100ms
Survival Heaters			
Circuit	Location	Power	
IDPU/MAG	MAG	0.2W	TBR
SWEA/STE	SWEA/STE	1.3W	TBR
SEP/SEPT-NS/SEPT-E	SEP/SEPT-NS/SEPT-E	3.5W	TBR

SWEA Aperture

STE Aperture

Exposed surface of detector at Bias voltage ۲ (100-200V, capacitively coupled to ground) 20 [0.8"] • EMC & Radiation shielding inside aperture TBD. 80° 45 [1.8"] ASIC Detector 45 [1.8"] 20° $\sqrt{80}^{\circ}$ 13 [0.5"]

David Curtis

3 [0.1"]

MAG

- While MAG has no aperture, it has a non-metallic case
- EMC shielding provided by thermal blankets tied to chassis ground

SEPT Apertures

- A total of 8 apertures per spacecraft
- One aperture of each pair is covered by an aluminized parylene foil
- The other aperture of each pair is open, with the ohmic (signal) side of the detector exposed.

SIT Aperture

Aperture covered by a pair of 1000ÅNickel foils, on a grid, at chassis ground

Side View

HET Aperture

Exposed surface of H1 detector, TBD side out.

LET Apertures

IMPACT Harness Diagram

IDPU-J2 BOOM-J3 STE-2 BOOM IDPU S/C to IDPU 1553 IDPU-J7 STE-J1 Actuator Powe ⊹ ACTUATOR S/C to IDPU 1553 Instrume Signal Ground HEATER Actuator Return 1553 Hamase Shield Actuator Harness Shield MAG Boom Harness Shield STE2 Hamess Shield IDPU-J1 MAG HTR PS IDPU-J6 STE2 Chassis Gro BOOM-J5 S/C to IDPU 28V Survival HEATER 318 77S/C Chassis Ground г MAG Harness Shield S/C to IDPU 28V Survival Return MAG Hamase Shield SWEA/STE IDPU-J5 BOOM-J4 LVPS SWEA/STE/IDPU Harness St SWEA/STE/IDPU Harness Shield S/C to IDPU 28V BOOM-J S/C to IDPU 28V Return IDPU-J3 PLASTIC/IDPU Harness Shield S/C to SWEA/STE 28V Survival HEATER Instrument Power Hamers Shield S/C to SWEA/STE 28V Survival Return Signal Ground IDPU-J4 ____SEP/IDPU Hamess Shield Instrument Signal Ground LVPS ____ S/C to SWEA/STE 28V IDPU Chassis Gro S/C Chassis Ground S/C to SWEA/STE 28V Return SME A/ST Power Ha SEP-J4 ____ JT S/C Chassis Ground SEP/IDPU Hamess Shield SIT PLASTIC Instrum SEP-J5 SIT-J1 Ŷ Signal Ground PLASTIC/IDPU Harness Shield HEATER S/C Chassis Ground Instrume Signal SEP Instrument Signal Ground SEP-J3 Ground Actuator Power SEP/SIT Harness Shield SIT Chassis Ground LVPS ACTUATOR S/C to PLASTIC 28V SEPT-E Actuator Return SEP-J8, J9 _____ SEPTE-J1, J2 Actuator Harness Shield S/C to PLASTIC 28V Return $\dot{\nabla}$ 77 SEP-J1 LVPS Power Harness Shiek HEATER Instrum Signal S/C Chassis Ground PLASTIC C S/C to SEP 28V Ground S/C Chassis Ground SEP/SEPT-E Harness Shield SEPT-E Chassis Gro CT S/C to SEP 28V Return SEPT-NS SEP-J6,J7 SEPTNS-J1, J2 ÷ S/C to SEP 28V Survival 7 HEATER Instrun S/C Chassis Ground HEATER S/C to SEP 28V Survival Return Signal Ground STEREO IMPACT University of California Space Science Lal SEP/SEPT-NS Hamess Shield Power Homese Shield SEP Chassis G SEPT-NS Choose G Grounding Diagram 177 S/C Chassis Ground Document Number IMPACT_GROUNDING

IMPACT Grounding

Document Namber Merch CROUNDING Merch CROUNDING David Curtis

IMPACT Grounding

- All chassis are tied to both Spacecraft Chassis Ground and Secondary (Signal) Ground
- IMPACT & PLASTIC instruments share a common signal ground via their harnesses
- The current IMPACT grounding scheme violates the EMC guidelines:
 - SEPT-NS, SEPT-E, and SIT are powered from the LVPS is SEP. This provides a ground loop that may carry secondary ground currents through the chassis ground
 - Likewise the Sunward STE is powered from the LVPS in the IDPU
 - SEPT-NS has had this configuration for a while, but was deemed acceptable due to the small value of the currents involved and the distance from the Magnetometer
 - This issue must be re-opened now that the breaking up of SEP and STE cause still more loops, though all carry small currents
 - The alternative is more or more complex power converters, which will cost mass, power, and \$.

IMPACT Grounding

Instrument	LVPS	Distance	Power
SEPT-NS	SEP	2m	0.5W
SEPT-E	SEP	1m	0.5W
SIT	SEP	0.1m	1.4W
STE-U	IDPU	<2m	0.1W

To estimate current conservatively use the power divided by 5 volts.

IDPU Digital Interfaces

- Interfaces between IDPU and SEP, SWEA, and PLASTIC uses a 3wire serial digital interface
 - Single-ended interface with high impedance receiver
 - 1.000MHz clock

STE Interface

- STE-D has a very short harness to SWEA
- STE-U has a harness to the IDPU
 - Mostly inside bus?
- Interface includes:
 - DC voltages capacitively coupled to secondary ground
 - Heater and Cover Actuator supplies (28V primary), in twisted-shielded pairs
 - Signal pulses, in coax
 - Common over-shield at chassis ground

MAG Harness

- The MAG harness includes a 32KHz (TBR) drive signals and three sense signals. These are carried in 50 ohm Coax
- The MAG harness also includes a temperature sensor and a heater supply
 - The heater supply is AC pulse-width modulated, synchronized to a multiple of 50KHz
 - The heater service is carried on a twisted-shielded pair
- The MAG harness has a common over-shield connected to chassis ground.

Boom Harness

- Boom harness includes IDPU to SWEA serial digital interface, MAG interface, and 28V primary power.
- Harness must be flexible to allow smooth boom deployment
- MAG drive & Serial Digital use ultra small 50 ohm coax
- Primary power, survival power, and temp sensors use twisted pairs
- MAG AC Heater power uses twisted shielded pair
- Tape-wrap overshield (with drain wires) tied to chassis ground
- Elgiloy Stacer provides a second shield
- A braid shield is used where the harness extends past the stacer

SEP Harnesses

- SEP Interfaces include
 - Secondary power
 - Survival heater power (?)
 - Temperature Sensors
 - Serial Digital Signals
 - Similar to IDPU design except semi-isolated ground and capacitive receiver (see next chart)
 - Details of internal shielding TBD.
- Harness includes a common over-shield connected to spacecraft chassis ground at both ends

SEP Serial Digital Interfaces

LVPS

- INPUT IS SPACECRAFT 28 VOLTS (22-35 VOLTS NOMINAL)
- COMPLIES WITH 7381-9030 GUIDELINES
- DEDICATED SUPPLIES PER SUBSYSTEM (IDPU, SEP, SWEA/STE, PLASTIC)
- TOPOLOGIES CHOSEN TO PROMOTE EFFICIENCY
- ALL SUPPLIES SYNCHRONIZED TO CRYSTAL CONTROLLED 100KHZ MULTIPLES
- SUPPLIES ARE SOFT STARTED TO MINIMIZE TURN-ON STRESSES –
 INPUT CURRENT CONTROLLED
- TRANSFORMERS FARADAY SHIELDED TO REDUCE ELECTROSTATIC
 NOISE
- INPUT TO SUPPLIES EMPLOYS BOTH COMMON MODE AND DIFFERENTIAL MODE FILTERS TO IMPROVE NOISE SUPPRESSION
- OUTPUTS EMPLOY COMMON MODE FILTERS TO IMPROVE NOISE
 SUPPRESSION

HVPS

- UCB builds the SIT HVPS
- CESR Builds the SWEA HVPS
- Supplies are unsynchronized sine-wave supplies running at about 65kHz off LVPS secondary supplies, up to 3500V.
- Low power (microamps)

SIT HVPS

SWEA MCP HVPS

Frequency Usage

- LVPS run a TBD multiple of 100KHz
- The MAG Heater runs at a TBD multiple of 50KHz
- IDPU Serial Digital Interfaces and Processors run at multiples of 1MHz
- SEP Serial Digital Interfaces run at 9600 baud
- MAG runs at 30KHz (TBR)
 - MAG is a receiver in a narrow band at this frequency