

STEREO IMPACT/SEP OVERVIEW

Tycho von Rosenvinge

Solar Energetic Particles/MAG Peer Review 2001-April-19, NASA/GSFC

SEP/MAG Peer Review

STEREO IMPACT

2001-April-19

TvR

SEP/MAG Peer Review 2001-April-19

Example of simultaneous SEP observations at different solar longitudes. Note the substantial differences in intensity profiles even though the spacecraft are not widely separated in longitude.

Another example of simultaneous SEP observations at different solar longitudes. Note how similar the intensity profiles are after ~ midday of September 25 despite the large differences in solar longitude.

2001-April-19

SEP Elemental Abundances During Two Different Events

IMPACT / PLASTIC Energy Coverage

SEP/MAG Peer Review

STEREO IMPACT

IMPACT Science Summary

Table A.1 IMPACT Summary

Experiment	Instrument	Measurement	Energy or Mag. field range	Mass (kg)	Power (w)	Data Rate (bps)	Time Res.	Instrument provider
SW	STE	Electron flux and anistropy	2-100 keV	0.35	0.20	64	16 s	UCB (Lin)
	SWEA	3D electron distrib., core & halo density, temp. & anisotropy	~0-3 keV	1.71	1.10	394	3D=1 min 2D=8s Mom.=2s	CESR (Sauvaud) + UCB (Lin)
MAG	MAG	Vector field	±500nT, ±65536 nT	0.25	0.0	154	1/8 s	GSFC (Acuna)
SEP	SIT	He to Fe ions	0.03-2 MeV/nuc	0.93	0.66	240	30 s	U. of Md. (Mason)
		³ He	0.15-0.25 MeV/nuc				30 s	+ MPAE (Korth) +UCB (Curtis)
	SEPT	Diff. electron flux	20-400 keV	1.06	1.04	120	1 min	U. of Kiel (Mueller-Mellin)
		Diff. proton flux	20-7000 keV				1 min	+ ESTEC (Sanderson)
		Anistropies of e,p	As above				15 min	
	LET	Ion mass 2-28 & anisotropy	1.5-40 MeV/nuc	0.51	0.18	320	1-15 min.	GSFC (von Rosenvinge) + Caltech (Mewaldt)
		³ He ions flux & anistropy	1.5-1.6 MeV/nuc				15 min.	+ JPL (Wiedenbeck)
		H ions flux & anistropy	1.5-3.5 MeV				1-15 min.	
	HET	Electrons flux & anistropy	1-8 MeV	0.70	0.07	120	1-15 min.	Caltech (Mewaldt) + GSFC (von Rosenvinge)
		Н	13-100 MeV				1-15 min.	+ JPL (Wiedenbeck)
		He	13-100 MeV				1-15 min.	
		He	15-60 MeV/nuc				15 min	
	SEP Common			1.69	1.55			Caltech (Mewaldt) + GSFC (von Rosenvinge)
IMPACT	IDPU			1.73	3.60	164		UCB (Curtis)
Common	(+Mag Analog)					+524 Burst		

IMPACT is a suite of 7 instruments built at 9 institutions by 31 Co-Investigators.

2001-April-19

8

TvR

- University of Kiel
 SEP Responsibilities
 - Design/fabrication/test of SEPT telescopes
- ESTeC
 - Design/fabrication/test of SEPT Electronics
- U of MD
 - Overall responsibility for design/test of SIT
- Max Planck/Lindau
 - Digital portion of SIT Time-of-Flight system
- Caltech
 - Low Energy Telescope development/test
 - Common SEP electronics, ASIC development, central data processing unit, Low Energy Telescopes
 - Overall integration/test of SEP package
- JPL
 - LET/HET detector procurement; LET development/test
- GSFC
 - HET development/fabrication/detector test/system test
 - LET/HET on-board algorithm development
 - Overall SEP mechanical design and fabrication (e.g. detector, telescope, enclosure, and bracket design)
 - Overall SEP thermal design
 - SIT fabrication/assembly + SIT MISC

SEP Personnel

- Tycho von Rosenvinge, SEP Coordinator/HET Design/SEP Mechanical, GSFC, <u>tycho@lheamail.gsfc.nasa.gov</u>
- Mike Choi, Thermal Engineer, GSFC, mchoi@mscmail.gsfc.nasa.gov
- Rick Cook, SEP Lead Electronics Engineer, Caltech, wrc@srl.caltech.edu
- Alan Cummings, SEP Project Manager at Caltech, Caltech, <u>ace@srl.caltech.edu</u>
- Andrew Davis, On-board Software, Caltech, ad@srl.caltech.edu
- Peter Falkner, SEPT Electronics Engineer, ESTeC, Peter.Falkner@esa.int
- John Hawk, Thermal Engineer, GSFC, john.hawk@gsfc.nasa.gov
- Branislav Kecman, Electronics Engineer, Caltech, kecman@srl.caltech.edu
- Axel Korth, SIT TOF, MPI Lindau, korth@linmpi.mpg.de
- Horst Kunow, SEPT, UofKiel, kunow@kernphysik.uni-kiel.de
- Glenn Mason, SIT Design, UofMD, mason@sampex3.umd.edu
- Richard Mewaldt, LET Design, Caltech, <u>rmewaldt@srl.caltech.edu</u>
- Reinhold Mueller-Mellin, SEPT Design, UofKiel, mueller-mellin@kernphysik.uni-kiel.de
- Donald Reames, LET&HET On-board Algorithms, GSFC, reames@lheavx.gsfc.nasa.gov
- Sandy Shuman, SEP Mechanical Designer, GSFC, <u>sandy@lheapop.gsfc.nasa.gov</u>
- Trevor Sanderson, SEPT electronics, ESTeC, sanderson@estso3.estec.esa.ne
- Mark Wiedenbeck, LET & HET Detectors, JPL, Mark.E.Wiedenbeck@jpl.nasa.gov
- Peter Walpole, SIT Electronics Engineer, UofMD, <u>walpole@sampex.umd.edu</u>

SEP/MAG Peer Review

2001-April-19

TvR

Overall SEP Block Diagram

Parker Spiral Viewing

This figure shows magnetic field lines being carried radially out from the sun by the solar wind. These field lines are wrapped into a spiral (known as the Parker Spiral) due to the sun's rotation. Particles coming from the sun travel along the field lines, so the SEP Fields of View (FOVs, shown in green) need to be looking as depicted for the <u>leading</u> spacecraft.

The lagging spacecraft is predominantly a copy of the leading spacecraft rolled 180 degrees about the spacecraft-sun line. This points the dish antenna (shown in red) towards the earth and doesn't disturb the sun-pointing instruments. The figure shows that this 180 degree roll would cause the lagging SEP FOV pointing (incorrectly) perpendicular to the solar magnetic field lines. This means that the mounting of the SEP instruments cannot be the same on the leading and lagging spacecraft.

SEP/MAG Peer Review

2001-April-19

Leading SEP Configuration

SEP/MAG Peer Review

2001-April-19

Lagging SEP Configuration

TvR

Main SEP Package Location on the Leading Spacecraft

Main SEP Package Located on the Lagging Spacecraft

Solar Electron Proton Telescopes (SEPT)

University of Kiel ESTeC

SEPT Telescope Schematic

Solar Electron Proton Telescope (SEPT) Sensor Schematics (1 of 2) Boresight: SEPT-E in-ecliptic, SEPT-NS north-south

SEPT Side View

SEPT Front View

2001-April-19

SEPT Block Diagram

STEREO IMPACT

SEPT Prototype Analog Electronics Board

SEPT System

SEPT consists of (numbers given per S/C) :

-SEPT-E:	2 double-ended telescopes	UoK
-SEPT-NS:	2 double-ended telescopes	UoK
-2 sets of pigtails	to SEPT Electronics	UoK
-2 housing boxes	UoK	
-1 bracket for SE	PT-NS	GSFC
-2 sets of analog a	and digital electronics	ESTEC
-2 sets of intercor	necting harness to SEP-DPU	GSFC

SEPT Concerns

•Concern about solar heat input solved: covers for all apertures baselined (TiNi actuators)

•Concern about scattered light in apertures solved: ohmic side of detectors face open space, can be made light-tight, penalty: increase of lower energy threshold

•Concern about viewing cone obstructions continue for SEPT-NS, mitigated by reduction of cone angle from 60° to 52°

•Cross talk between inner segment (D1) and outer ring (G1)

Solution: insert narrow guard ring (C1)

Penalty: 3 coax cables per detector instead of 2

•Cross talk between D1 and D2, no solution yet, calculate capacitive coupling using known area (52 mm²) and distance (600 μ m)

•Purging required

Suprathermal Ion Telescope (SIT)

University of Maryland Max Planck Institut at Lindau GSFC

Suprathermal Ion Telescope

Suprathermal Ion Telescope (SIT)

27

SEP/MAG Peer Review 2001-April-19

SIT Description

•TOF vs E

•Energy - 1 SSD

-surface barrier or ion implant

-15mm x 40 mm

-500u

•TOF - 1 START & 1 STOP

–10 cm flight path

-chevron pair micro-channel plates

-1000v bias per plate, commandable

•Foils - 2

–Ni

–1000A, on grid

SEP/MAG Peer Review

2001-April-19

TvR

SIT High Voltage Power Supply

•Provides bias voltages to operate the microchannel plates and to "focus" the secondary electrons produced by incoming ions

- •Nominal voltages: 3400,3200,2200,2000,1000 and 950 v
- •Top voltage controlled by command, others change proportionally
- •0-5v control voltage
- •Maximum output ~4200v
- •On/Off Command : 5v level
- •Disable plug to prevent operation during ground testing
- •Operates on +/- 12v
- •Supplied in housing by UCB

Low Energy Telescope (LET)

Caltech/JPL/GSFC

2001-April-19

Low Energy Telescope (LET) Schematic

TvR

SEP/MAG Peer Review

LET L1 Detector Drawing

33

LET L2 Detector

LET L3 Detector

LET dE/dx x E Response

LET Operation During High-Rate Periods

Requirement: Provide composition and energy spectra measurements over conditions ranging from quiet-time to the largest solar events

Issue: During very high-rate periods (e.g., peak of Bastille Day 2000 event) the single-detector count rates, especially on the front detectors, can exceed 1,000,000/sec, mostly due to out-of-geometry, wide angle protons

Approach:

- L1 detectors have bull's-eye design with smaller central area
- Collimation of L1 detectors to shield against wide-angle protons
- Shield sides of telescope to reduce L2, L3 count rates
- Adjust thresholds on selected detectors to reduce overall count rates while maintaining energy and species coverage

LET Operation During High-Rate Periods ... Cont

- Thresholds adjusted by ignoring high-gain response on selected detectors
- Adjustments controlled on-board by "OR" of count-rates from detectors that are not adjusted (L1A3, L1B3, L2A5, L2A6, L2B5, L2B6, L3Ai, and L3Bi)

Implementation (in order of occurrence):

- All L1o thresholds raised from 0.7 to 3 MeV (reduce H, He geometry by x5 and singles by x5)
- Raise all but L2A5,6, L2B5,6 thresholds from 0.3 to 4 MeV Raise L3Ao, L3Bo thresholds from 1 to 20 MeV (reduce H, He geometry by additional ~x5 factor)
- Raise all L1i thresholds except L1A3, L1B3 from 0.3 to 3 MeV (reduces H, He geometry & singles by additional ~x5 factor)

LET Operation During High-Rate Periods ... Cont

Considerations:

- To a large extent, full geometry for Z = 6 particles is maintained
- H and He coverage maintained with adequate geometry along with front/back response
- At most two thresholds used for a given detector
- Requirements for adjustments must employ hysteresis and suitable time average
- Simulations based on Wind/ACE events needed to test approach
- Test in laboratory by reducing nominal, high-gain thresholds

High Energy Telescope (HET)

GSFC Caltech JPL

2001-April-19

HET Telescope Schematic

SEP/MAG Peer Review

2001-April-19

HET H1 Detector Schematic

HET H1 Detector

HET Operation During High-Rate Periods

Requirement: Provide composition and energy spectra measurements over conditions ranging from quiet-time to the largest solar events

Issue: During very high-rate periods (e.g., peak of Bastille Day 2000 event) the single-detector count rates, especially on the front detector, will exceed 100,000/sec, mostly due to out-of-geometry, wide angle protons

Approach (Similar to LET):

- H1 detector has bull's-eye design with smaller central area
- Collimation of H1 detector to shield against wide-angle protons
- Shield sides of telescope to reduce H2 to H6 count rates
- Adjust threshold on H1o to reduce overall count rate while maintaining energy and species coverage

HET Operation During High-Rate Periods ... Cont

- Threshold adjusted by ignoring high-gain response on selected detectors
- Adjustments controlled on-board by "OR" of count-rates from detectors that are not adjusted (H1i, H2 H6).

Implementation:

• H1o threshold raised from 0.2 to ~16 MeV when singles rates reach TBD value.

2001-April-19

SEP/MAG Peer Review

2001-April-19

STEREO IMPACT

SEP/MAG Peer Review

2001-April-19

SEPT North-South Fields of View

LET Field of View Impingement with PLASTIC

SEP/MAG Peer Review

MASS Allocation						
SEP resources:	Mass [g]		4/19/01			
Component	Update	Phase A	Diff.			
SIT sensor & door	500	480	20			
SIT elec. boards & wiring	370	290	80			
SIT HVPS	160	160	0			
SIT subtotal:	1030	930	100			
SEPT-NS (w/o harness)	520	440	80			
SEPT-E (w/ 10cm harness)	540	460	80			
SEPT subtotal:	1060	900	160			
LET det. & housing	515	390	125			
LET electronics	235	120	115			
LET subtotal:	750	510	240			

SEP/MAG Peer Review

MASS Allocation Cont						
Component	Update	Phase A	Diff.			
HET det. & housing	460	610	-150			
HET electronics	160	90	70			
HET subtotal:	620	700	-80			
Cent. elec. encl. & hdwr	1030	750	280			
El. boards, shields, harness	1090	940	150			
Cent. elec. subtotal	2120	1690	430			
SIT encl. & hdwr	200	N/A	200			
SEPT-NS bracket	270	200	70			
LET bracket	600	N/A	600			
SEP bracket	N/A	1000	-1000			
SEP total:	6650	5930	720			

MASS Allocation ... Cont

Component	Update	Phase A	Diff.
SEPT-NS harness (2m)	150	150	0
Thermal blankets	100	N/I	100

Some Controlling Documents

- IMPACT Phase A Report covers the top level instrument performance requirements
- IMPACT/Spacecraft ICD covers the spacecraft interface
- IMPACT Serial Interface document covers the data interface between SEP and the IDPU
- IMPACT PAIP covers the performance assurance requirements
- STEREO EMC and Contamination Control plans