8XC196KC/KD
Instruction Set
Reference

APPENDIX A
8XC196KC/KD INSTRUCTION SET REFERENCE

This appendix provides reference information for the 8XC196KC/KD instruction set. It
describes each instruction, shows the relationships between instructions and PSW flags, and
shows hexadecimal opcodes, instruction lengths, and execution times.

Table A-1 defines the variables used in Table A-2 to represent instruction operands. Table
A-2 lists the instructions alphabetically and describes each of them.

Tables A-3 and A-4 define the abbreviations and symbols used in Tables A-5 and A-6.
Table A-5 shows the effect of each instruction on the Program Status Word flags, and Table
A-6 shows the effect of the PSW flags or a specified register bit on conditional jump
instructions.

Table A-7 lists the instruction opcodes, in hexadecimal order, along with the corresponding
instruction mnemonics. Table A-8 is a map of the 8XC196KC/KD opcodes.

Table A-9 lists instruction lengths and opcodes for each applicable addressing mode. Table
A-10 lists instruction execution times, expressed in state times. Table A-11 lists execution
times, expressed in state times, for PTS cycles.

Intdcm | 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-1. Operand Variables

Variable Description

aa A two-bit field within an opcode that selects the basic addressing mode used. This
field is present only in those opcodes that allow address mode options. The field is
encoded as follows:

00 Register direct

01 Immediate
10 Indirect
11 Indexed
baop A byte operand that is addressed by any address mode.
bbb A three-bit field within an opcode that selects a specific bit within a register.
bitno A three-bit field within an opcode that selects one of the eight bits in a byte.
breg A byte register in the internal Register File. When it could be unclear whether this
variable refers to a source or a destination register, it is prefixed with an Sor a D.
cadd An address in the program code.
Dbreg * A byte register in the internal Register File that serves as the destination of the
instruction operation.
disp Displacement. The distance between the end of an instruction and the target label.
Dwreg * A word register in the internal Register File that serves as the destination of the
instruction operation. Must be aligned on an address that is evenly divisible by 2.
Ireg A 32-bit register in the internal Register File. Must be aligned on an address that is
evenly divisible by 4.
Sbreg * A byte register in the internal Register File that serves as the source of the instruction
operation.
Swreg * A byte register in the internal Register File that serves as the source of the instruction
operation. Must be aligned on an address that is evenly divisible by 2.
waop A word operand that is addressed by any address mode.
wreg A word register in the internal Register File. When it could be unclear whether this

variable refers to a source or a destination register, it is prefixed with an Sor a D.
Must be aligned on an address that is evenly divisible by 2.

XXX The three high-order bits of displacement.

* The D or S prefix is used only when it could be unclear whether a variable refers to a destination or a
source register.

A-2

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set

Mnemonic

Operation Instruction Format
ADD ADD WORDS. Adds the source and DEST, SRC
(2 operands) | destination word operands and stores the
sum into the destination operand. ADD wreg, waop
(DEST) « (DEST) + (SRC) (011001aa) (waop) (wreg)
ADD ADD WORDS. Adds the two source DEST, SRC1, SRC2
(3 operands) | word operands and stores the sum into
the destination operand. ADD . Dwreg, Swreg, waop
(DEST) « (SRC1) + (SRC2) (010001aa) (waop) (Swreg) (Dwreg)
ADDB ADD BYTES. Adds the source and DEST, SRC
(2 operands) | destination byte operands and stores the
sum into the destination (leftmost) ADDB breg, baop
operand. (011101aa) (baop) (breg)
(DEST) « (DEST) + (SRC)
,(L:\SDDB d) ADD B\JTES(51 Adds thﬁ two sourcehbyte DEST, SRC1, SRC2
operands) | operands and stores the sum into the
destination operand. ADDB Dbreg, Sbreg, baop
(DEST) « (SRC1) + (SRC2) (010101aa) (baop) (breg)
ADDC ADD WORDS WITH CARRY. Adds the DEST, SRC
source and destination word operands
and stores the sum and the carry flag (0 | ADDC wreg, waop
or 1) into the destination operand. (101001aa) (waop) (wreg)
(DEST) « (DEST) + (SRC) + C
ADDCB ADD BYTES WITH CARRY. Adds the DEST, SRC
source and destination byte operands
and stores the sum and the carry flag (0 | ADDCB breg, baop
or 1) into the destination operand. (101101aa) (baop) (breg)
(DEST) « (DEST) + (SRC) + C
AND LOGICAL AND WORDS. ANDs the DEST, SRC
(2 operands) | source and destination word operands
and sto(;e§|_ t'(1he resmljlthinto the dest;naéion AND wreg, waop
operand. The result has ones in the bit
positions in which both operands hada | (011000aa) (waop) (wreg)
“1” and zeros in all other bit positions.
(DEST) « (DEST) AND (SRC)
AND LOGICAL AND WORDS. ANDs the two DEST, SRC1, SRC2
(8 operands) | source word operands and stores the
resu:t it?to the destina}tioR ogerand. The |AND Dwreg, Swreg, waop
t has ones in only the bit positions i
which both operands had a “1° and zeros | (010000aa) (waop) (Swreg) (Dwreg)
in all other bit positions.
(DEST) « (SRC1) AND (SRC2)
ANDB LOGICAL AND BYTES. ANDs the DEST, SRC
(2 operands) | source and destination byte operands

and stores the result into the destination
operand. The result has ones in only the
bit positions in which both operands had
a “1” and zeros in all other bit positions.

(DEST) « (DEST) AND (SRC)

ANDB breg, baop
(011100aa) (baop) (breg)

A-3

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic Operation Instruction Format
ANDB LOGICAL AND BYTES. ANDs the two DEST, SRC1, SRC2
(3 operands) | source byte operands and stores the

result into the destination operand. The
result has ones in only the bit positions in
which both operands had a “1” and zeros
in all other bit positions.

(DEST) « (SRC1) AND (SRC2)

ANDB Dbreg, Sbreg, baop
(010100aa) (baop) (Sbreg) (Dbreg)

BMOV BLOCK MOVE. Moves a block of word DEST, SRC
data from one location in memory to
aggther. The sourlcelam::1 destina’ﬂon BMOV Ireg, wreg
addresses are calculated using the
indirect with auto-increment addressing | (11000001) (wreg) (Ireg)
mode. A long register addresses the
source and destination pointers, which
are stored in adjacent word registers. A | NOTE: CNTREG is not decremented during
word register (CNTREG) specifies the this instruction. It is easy to unintentionally
number of transfers. The blocks of data | create a long, uninterruptable operation with
can reside anywhere in memory, but the BMOV instruction. Use the BMOVI
should not overlap. instruction for an interruptable operation.
BMOVI INTERRUPTABLE BLOCK MOVE. DEST, SRC
Moves a block of word data from one
location in me(rjnory tc>I an%tl\rheor.v The BMOVI lIreg, wreg
instruction is identical to , except
that BMOVI is interruptable. The source | (11001101) (wreg) (Ireg)
and destination addresses are calculated
using the indirect with auto-increment
addressing mode. A long register
addresses the source and destination
pointers, which are stored in adjacent NOTE: CNTREG is not decremented unless
word registers. A word register the instruction is interrupted. When BMOVI is
(CNTREG) specifies the number of interrupted, CNTREG is updated to store the
transfers. The blocks of data can reside | interim word count at the time of the interrupt.
anywhere in memory, but should not For this reason, you should always reload
overlap. CNTREG before starting a BMOVI.
COUNT « (CNTREG)
LOOP: SRCPTR « (PTRS)
DSTPTR « (PTRS + 2)
(DSTPTR) < (SRCPTR)
(PTRS) « SRCPTR + 2
(PTRS + 2) « DSTPTR + 2
COUNT « COUNT 1
if COUNT = 0 then
go to LOOP
BR BRANCH INDIRECT. Continues DEST
execution at the address specified in the
operand word register. BR [wreg]
PC « (DEST) (11100011) (wreg)
CLR CLEARdWORD. Clears the value of the DEST
rand.
og:;- CLR wreg
«~0
() (00000001) (wreg)

A-4

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic Operation Instruction Format
CLRB CLEAR BYTE. Clears the value of the DEST
operand.
CLRB breg

(DEST) <0

(00010001) (breg)

CLRC

f?LEAR CARRY FLAG. Clears the carry
ag.

C«0

CLRC
(11111000)

CLRVT

CLEAR OVERFLOW-TRAP FLAG.
Clears the overflow-trap flag.

VT «0

CLRVT
(11111100)

CMP

COMPARE WORDS. Subtracts the
source word operand from the
destination word operand. The flags are
altered, but the operands remain
unaffected. If a borrow occurs, the carry
flag is cleared; otherwise it is set.

(DEST) - (SRC)

DEST, SRC
CMP wreg, waop
(100010aa) (waop) (wreg)

CMPB

COMPARE BYTES. Subtracts the
source byte operand from the destination
byte operand. The flags are altered, but
the operands remain unaffected. If a
borrow occurs, the carry flag is cleared;
otherwise it is set. ‘

(DEST) - (SRC)

DEST, SRC
CMPB breg, baop
(100110aa) (baop) (breg)

CMPL

COMPARE LONG. Compares the
magnitudes of two double-word (long)
operands. The operands are specified
using the direct addressing mode. The
flags are altered, but the operands
remain unaffected. If a borrow occurs,
the carry flag is cleared; otherwise, it is
set.

(DEST) - (SRC)

DEST, SRC
CMPL Ireg, Ireg

(11000101) (src Ireg) (dest#ireg)

DEC

DECREMENT WORD. Decrements the
value of the operand by one.

(DEST) « (DEST)-1

DEST
DEC wreg
(00000101) (wreg)

DECB

DECREMENT BYTE. Decrements the
value of the operand by one.

(DEST) « (DEST)-1

DEST
DECB breg
(00010101) (breg)

DI

DISABLE INTERRUPTS. Disables
interrupts. Interrupt-calls cannot occur
after this instruction.

Interrupt Enable (PSW.1) < 0

DI
(11111010)

A-5

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DIV

DIVIDE INTEGERS. Divides the
contents of the destination long-integer
operand by the contents of the source
integer word operand, using signed

arithmetic. It stores the quotient into the

low-order word of the destination (i.e., the
word with the lower address) and the
remainder into the high-order word.

(low word DEST) « (DEST) / (SRC)
(high word DEST) « (DEST) MOD(SRC)

DEST, SRC
DIV Ireg, waop
(11111110) (100011aa) (waop) (Ireg)

DIVB

DIVIDE SHORT-INTEGERS. Divides the
contents of the destination integer
operand by the contents of the source
short-integer operand, using signed
arithmetic. It stores the quotient into the
low-order word of the destination (i.e., the
word with the lower address) and the
remainder into the high-order word.

(low byte DEST) « (DEST) / (SRC)
(high byte DEST) « (DEST) MOD (SRC)

DEST, SRC
DIVB wreg, baop
(11111110) (100111aa) (baop) (wreg)

DIVU

DIVIDE WORDS, UNSIGNED. Divides
the content of the destination double-
word operand by the contents of the
source word operand, using unsigned
arithmetic. It stores the quotient into the
low-order word (i.e., the word with the
lower address) of the destination operand
and the remainder into the high-order
word. The following two statements are
performed concurrently.

(low word DEST) « (DEST) / (SRC)
%gigl’é\)lvord DEST) « (DEST) MOD

DEST, SRC
DIVU Ireg, waop
(100011aa) (waop) (Ireg)

DivuB

DIVIDE BYTES, UNSIGNED. This
instruction divides the contents of the
destination word operand by the
contents of the source byte operand,
using unsigned arithmetic. It stores the
quotient into the low-order word (i.e., the
word with the lower address) of the
destination operand and the remainder
into the high-order word. The following
two statements are performed
concurrently.

(low byte DEST) « (DEST) / (SRC)
(high byte DEST)« (DEST) MOD (SRC)

DEST, SRC
DIVUB wreg, baop
(100111aa) (baop) (wreg)

A-6

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DJNZ

DECREMENT AND JUMP IF NOT
ZERO. Decrements the value of the byte
operand by 1. If the result is 0, control
passes to the next sequential instruction.
If the result is not equal to 0, the
instruction adds to the program counter
the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in the range
of -128 to +127.

(COUNT) « (COUNT)-1
if (COUNT) # 0 then

PC « PC + disp (Note 1)
end_if

DJNZ breg,cadd
(11100000) (breg) (disp)

DJNZW

DECREMENT AND JUMP IF NOT
ZERO WORD. Decrements the value of
the word operand by 1. If the result is 0,
control passes to the next sequential
instruction. If the result is not equal to 0,
the instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in the range
of —128 to +127

(COUNT) « (COUNT)-1
if (COUNT) # 0 then

PC « PC + disp (Note 1)
end_if

DJNZW wreg,cadd
(11100001) (wreg) (disp)

DPTS

DISABLE PERIPHERAL
TRANSACTION SERVER (PTS).
Disables the Peripheral Transaction
Server (PTS).

PTS Disable (PSW.2) « 0

DPTS
(11101100)

El

ENABLE INTERRUPTS. Enables
interrupts following the execution of the
next statement. Interrupt-calls cannot
occur immediately following this
instruction.

Interrupt Enable (PSW.1) « 1

El
(11111011)

EPTS

ENABLE PERIPHERAL TRANSACTION
SERVER (PTS). Enables the Peripheral
Transaction Server (PTS).

PTS Enable (PSW.2) « 1

EPTS
(11101101)

EXT

SIGN-EXTEND INTEGER INTO LONG-
INTEGER. Sign-extends the low-order
word of the operand throughout the high-
order word of the operand.

if (low word DEST) < 8000H then
(high word DEST) «- 0
else
(high word DEST) « OFFFFH
end_if

EXT Ireg
(00000110) (Ireg)

A-7

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

EXTB

SIGN-EXTEND SHORT-INTEGER INTO
INTEGER. Sign-extends the low-order
byte of the operand throughout the high-
order byte of the operand.

if (low byte DEST) < 80H then
(high byte DEST) «- 0
else
(high byte DEST) « OFFH
end_if

EXTB wreg
(00010110) (wreg)

IDLPD

IDLE/POWERDOWN. Depending on the
8-bit value of the KEY operand, this
instruction causes the part

o to enter Idle mode (KEY=1),
¢ to enter Powerdown mode (KEY=2),
o to execute a reset sequence

(KEY = any value other than 1 or 2).

The bus controller completes any
prefetch cycle in progress before the
CPU stops or resets.

if KEY = 1 then
enter Idle
else
if KEY = 2 then
enter Powerdown
else
execute reset

IDLPD #key
(11110110) (key)

INC

INCREMENT WORD. Increments the
value of the word operand by 1.

(DEST) « (DEST) + 1

INC wreg
(00000111) (wreg)

INCB

INCREMENT BYTE. Increments the
value of the byte operand by 1.

(DEST) « (DEST) + 1

INCB breg
(00010111) (breg)

JBC

JUMP IF BIT IS CLEAR. Tests the -
specified bit. If the bit is set, control
passes to the next sequential instruction.
If the bit is clear, this instruction adds to
the program counter the offset between
the end of this instruction and the target
label, effecting the jump. The offset must
be in the range of —128 to +127.

if (specified bit) = 0 then
PC « PC + disp (Note 1)

JBC breg,bitno,cadd
(00110bbb) (breg) (disp)

A-8

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JBS

JUMP IF BIT IS SET. Tests the specified
bit. If the bit is clear, control passes to the
next sequential instruction. If the bit is
set, this instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in the range
of —128 to +127.)

if (specified bit) = 1 then
PC « PC + disp (Note 1)

JBS breg,bitno,cadd
(00111bbb) (breg) (disp)

JC

JUMP IF CARRY FLAG IS SET. Tests
the carry flag. If the carry flag is clear,
control passes to the next sequential
instruction. If the carry flag is set, this
instruction adds to the program counter
the offset between the end of this

| instruction and the target label, effecting

the jump. The offset must be in the range
of —128to +127.

if C = 1 then
PC « PC + disp (Note 1)

Jc cadd
(11011011) (disp)

JE

JUMP IF EQUAL. Tests the zero flag. If
the flag is clear, control passes to the
next sequential instruction. If the zero
flag is set, this instruction adds to the
program counter the offset between the
end of this instruction and the target
label, effecting the jump. The offset must
be in the range of —128 to +127.

if Z=1then
PC « PC + disp (Note 1)

JE cadd
(11011111) (disp)

JGE

JUMP IF SIGNED GREATER THAN OR
EQUAL. Tests the negative flag. If the
negative flag is set, control passes to the
next sequential instruction. If the negative
flag is clear, this instruction adds to the
program counter the offset between the
end of this instruction and the target
label, effecting the jump. The offset must
be in the range of —128 to +127.

if N = 0 then
PC « PC + disp (Note 1)

JGE cadd
(11010110) (disp)

JGT

JUMP IF SIGNED GREATER THAN.
Tests both the zero flag and the negative
flag. If either flag is set, control passes to
the next sequential instruction. If both
flags are clear, this instruction adds to
the program counter the offset between
the end of this instruction and the target
label, effecting the jump. The offset must
be in the range of —128 to. +127.

if N=0AND Z = 0 then
PC « PC + disp (Note 1)

JGT cadd
(11010010) (disp)

A-9

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JH

JUMP IF HIGHER (UNSIGNED). Tests
both the zero flag and the carry flag. If
either the carry flag is clear or the zero
flag is set, control passes to the next
sequential instruction. If the carry flag is
set and the zero flag is clear, this
instruction.adds to the program counter
the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in range of
—128to +127.

if C=1AND Z = 0 then
PC « PC + disp (Note 1)

JH cadd
(11011001) (disp)

JLE

JUMP IF SIGNED LESS THAN OR
EQUAL. Tests both the negative flag and
the zero flag. If both flags are clear,)
control passes to the next sequential
instruction. If either flag is set, this
instruction adds to the program counter
the offset between the end of this
instruction nad the target label, effecting
the jump. The offset must be in the rang
of —128 to +127. '

ifN=1ORZ=1then
PC « PC + disp (Note 1)

JLE cadd
(11011010) (disp)

JLT

JUMP IF SIGNED LESS THAN. Tests
the negative flag. If the flag is clear,
control passes to the next sequential
instruction. If the flag is set, this
instruction adds to the program counter
the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in the range
of —128 to +127.

if N =1 then
PC « PC + disp (Note 1)

JLT cadd
(11011110) (disp)

JNC

JUMP IF CARRY FLAG IS CLEAR.
Tests the carry flag. If the flag is set,
control passes to the next sequential
instruction. If the carry flag is clear, this
instruction adds to the program counter
the offset between the end of this
instruction and the target label. The offset
must be in the range of —128 to +127.

if C = 0 then
PC « PC + disp (Note 1)

JNC cadd
(11010011) (disp)

A-10

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Coniinued)

Mnemonic

Operation

Instruction Format

JNE

JUMP IF NOT EQUAL. Tests the zero
flag. If the flag is set, control passes to
the next sequential instruction. If the zero
flag is clear, this instruction adds to the
program counter the offset between the
end of this instruction and the target
label. The offset must be in the range of —
128 to +127.

if Z = 0 then
PC « PC + disp (Note 1)

JNE cadd
(11010111) (disp)

JNH

JUMP IF NOT HIGHER (UNSIGNED).
Tests both the zero flag and the carry
flag. If the carry flag is set and the zero
flag is clear, control passes to the next
sequential instruction. If either the carry
flag is set or the zero flag is set, this
instruction adds to the program counter
the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in range of
-128 to +127.

if C=00RZ=1then
PC « PC + disp (Note 1)

JNH cadd
(11010001) (disp)

JNST

JUMP IF STICKY BIT FLAG IS CLEAR.
Tests the sticky bit flag. If the flag is set,
control passes to the next sequential
instruction. If the sticky bit flag is clear,
this instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in range of
-128 to +127.

if ST = 0 then
PC « PC + disp (Note 1)

JNST cadd
(11010000) (disp)

JNV

JUMP IF OVERFLOW FLAG IS CLEAR.
Tests the overflow flag. If the flag is set,
control passes to the next sequential
instruction. If the overflow flag is clear,
this instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in range of
—128to +127.

if V.= 0 then
PC « PC + disp (Note 1)

JNV cadd
(11010101) (disp)

A-11

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JNVT

JUMP IF OVERFLOW-TRAP FLAG IS
CLEAR. Tests the overflow-trap flag. If
the flag is set, this instruction clears the
flag and passes control to the next
sequential instruction. If the overflow-trap
flag is clear, this instruction adds to the
program counter the offset between the
end of this instruction and the target
label, effecting the jump. The offset must
be in range of —128 to +127.

if VT = 0 then '
PC « PC +disp (Note 1)

JNVT cadd
11010100) (disp)

JST

JUMP IF STICKY BIT FLAG IS SET.
Tests the sticky bit flag. If the flag is
clear, control passes to the next
sequential instruction. If the sticky bit flag
is set, this instruction adds to the
program counter the offset between the
end of this instruction and the target
label, effecting the jump. The offset must
be in range of —128 to +127..

if ST = 1 then
- PC « PC + disp (Note 1)

JST cadd
(11011000) (disp)

Jv

JUMP IF OVERFLOW FLAG IS SET.
Tests the overflow flag. If the flag is clear,
control passes to the next sequential
instruction. If the overflow flag is set, this
instruction adds to the program counter
the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in range of
-128 to +127.

if V=1 then
PC « PC + disp (Note 1)

JV cadd
(11011101) (disp)

JVT

JUMP IF OVERFLOW-TRAP FLAG IS
SET. Tests the overflow-trap flag. If the
flag is clear, control passes to the next
sequential instruction. If the overflow-trap
flag is set, this instruction clears the flag
and adds to the program counter the
offset between the end of this instruction
and the target label, effecting the jump.
T?%offset must be in range of —~128 to

+ .

if VT =1 then
PC « PC + disp (Note 1)

JVT cadd
(11011100) (disp)

A-12

intelé

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

LCALL

LONG CALL. PUSHes the contents of
the program counter (the return address)
onto the stack, then adds to the program
counter the offset between the end of this
instruction and the target label, effecting
the call. The operand may be any
address in the entire address space.

LCALL cadd
(11101111) (disp-low) (disp-high)

SP « SP-2
(SP) « PC .
PC « PC +disp
LD LOAD WORD. Loads the value of the DEST, SRC
source word operand into the destination
operand. _ » LD wreg, waop
(DEST) « (SRC) (101000aa) (waop) (wreg)
LDB LOAD BYTE. Loads the value of the DEST, SRC
source byte operand into the destination
operand. LDB ~ breg, baop
(DEST) « (SRC) (101100aa) (baop) (breg)
LDBSE LOAD BYTE SIGN-EXTENDED. Sign- DEST, SRC
extends the value of the source short-
integer operand and loads it into the LDBSE wreg, baop
destination integer operand. (101111aa) (baop) (wreg)
(low byte DEST) « (SRC)
if (SRC) < 80h then
(high byte DEST) «- 0
else
(high byte DEST) « OFFH
end_if
LDBZE LOAD BYTE ZERO-EXTENDED. Zero- DEST, SRC
extends the value of the source byte
operand and loads it into the destination | LDBZE wreg, baop
word operand. (101011aa) (baop) (wreg)
(low byte DEST) « (SRC) '
(high byte DEST) « 0
LJMP LONG JUMP. Adds to the program
counter the offset between the end of this '
irI:structionT%nd the target Iabgl, effecting | LJMP cadd
the jump. The operand may be any . S
address in the entire address space. (11100111) (disp-low) (disp-high)
PC « PC + disp
MUL MULTIPLY INTEGERS. Multiplies the DEST, SRC
(2 operands) | source and destination integer operands,
using signed arithmetic, and stores the | MUL Ireg, waop

32-bit result into the destination long-
integer operand. The sticky bit flag is
undefined after the instruction is
executed.

(DEST) « (DEST) x (SRC)

(11111110) (010111aa) (waop) (Ireg)

A-13

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

MUL
(3 operands)

MULTIPLY INTEGERS. Multiplies the
two source integer operands, using
signed arithmetic, and stores the 32-bit
result into the destination long-integer
operand. The sticky bit flag is undefined
after the instruction is executed.

(DEST) « (SRC1) x (SRC2)

DEST, SRC1, SRC2
MUL lIreg, wreg, waop

(11111110) (01001 1aa) (waop) (wreg) (Ireg)

MULB
(2 operands)

MULTIPLY SHORT-INTEGERS.
Multiplies the source and destination
short-integer operands, using signed
arithmetic, and stores the 16-bit result
into the destination integer operand. The
sticky bit flag is undefined after the
instruction is executed.

(DEST) « (DEST) x (SRC)

DEST, SRC
MULB wreg, baop
(11111110) (011111aa) (baop) (wreg)

MULB
(3 operands)

MULTIPLY SHORT-INTEGERS.
Multiplies the two source short-integer
operands, using signed arithmetic, and
stores the 16-bit result into the
destination integer operand. The sticky
bit flag is undefined after the instruction is
executed. .

(DEST) <——~(SRC1) x (SRC2)

DEST, SRC1, SRC2
MULB wreg, breg, baop
(11111110) (010111aa) (baop) (breg) (wreg)

MULU
(2 operands)

MULTIPLY WORDS, UNSIGNED.
Multiplies the source and destination
word operands, using unsigned
arithmetic, and stores the 32-bit result
into the destination double-word
operand. The sticky bit flag is undefined
after the instruction is executed.

(DEST) « (DEST) x (SRC)

DEST, SRC
MULU Ireg, waop

(011011aa) (waop) (Ireg)

MULU
(3 operands)

MULTIPLY WORDS, UNSIGNED.
Multiplies the two source word operands,
using unsigned arithmetic, and stores the
32-bit result into the destination double-
word operand. The sticky bit flag is
undefined after the instruction is
executed.

(DEST) « (SRC1) x (SRC2)

DEST, SRC1, SRC2
MULU Ireg, wreg, waop

(010011aa) (waop) (wreg) (Ireg)

MULUB
(2 operands)

MULTIPLY BYTES, UNSIGNED.
Multiplies the source and destination

.| byte operands, using unsigned

arithmetic, and stores the word result
into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (DEST) x (SRC)

DEST, SRC
MULUB wreg, baop
(011111aa) (baop) (wreg)

- A-14

intel.

8XC196KC/KD INSTRUCTION SET REFERENCE

~ Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

MULUB
(3 operands)

MULTIPLY BYTES, UNSIGNED.
Multiplies the two source byte operands,
using unsigned arithmetic, and stores the
word result into the destination operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (SRC1) x (SRC2)

DEST, SRC1, SRC2
MULUB wreg, breg, baop
(010111aa) (baop) (breg) (wreg)

NEG

NEGATE INTEGER. Negates the value
of the integer operand.

(DEST) « —(DEST)

NEG wreg
(00000011) (wreg)

NEGB

NEGATE SHORT-INTEGER. Negates
the value of the short-integer operand.

(DEST) « —(DEST)

NEGB breg
(00010011) (breg)

NOP

NO OPERATION. Does nothing. Control
passes to the next sequential instruction.

NOP
(11111101)

NORML

NORMALIZE LONG-INTEGER.
Normalizes the source (leftmost) long-
integer operand. (That is, it shifts the
operand to the left until its most
significant bit is “1” or until it has
performed 31 shifts). If the most
significant bit is still “0“ after 31 shifts, the
instruction stops the process and sets
the zero flag. The instruction stores the
actual number of shifts performed in the
destination (rightmost) operand.

(COUNT) « 0 ‘
do while (MSB(DEST) « 0) AND
(COUNT) < 31)
(DEST) « (DEST) x 2
(COUNT) « (COUNT) + 1
end_while

SRC, DEST
NORML Ireg, breg
(00001111) (breg) (Ireg)

NOT

COMPLEMENT WORD. Complements
the value of the word operand (replaces
e1a<);h “1” with a “0” and each “0” with a

| (DEST) « NOT (DEST)

NOT wreg
(00000010) (wreg)

NOTB

COMPLEMENT BYTE. Complements the
value of the byte operand (replaces each
“1” with a “0” and each “0” with a “1”).

(DEST) « NOT (DEST)

NOTB breg
(00010010) (breg)

A-15

intal.

.8XC1 96KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

OR

LOGICAL OR WORDS. ORs the source
word operand with the destination word
operand and replaces the original
destination operand with the result. The
result has a “1” in each bit position in
which either the source or destination
operand had a “1".

(DEST) « (DEST) OR (SRC)

DEST, SRC
OR wreg, waop

(100000aa) (waop) (wreg)

ORB

LOGICAL OR BYTES. ORs the source
byte operand with the destination byte
operand and replaces the original
destination operand with the result. The
result has a “1” in each bit position in
which either the source or destination
operand had a “1”.

(DEST) « (DEST) OR (SRC)

DEST, SRC
ORB breg, baop -
(100100aa) (baop) (breg)

POP

POP WORD. Pops the word on top of the
stack and places it at the destination
operand.

(DEST) « (SP)
SP < SP+2

POP waop
(110011aa) (waop)

POPA

POP ALL. This instruction is used
instead of POPF, to support the eight

additional interrupts. It pops two words POPA
off the stack and places the first word 11110101
into the INT_MASK1/WSR registerand | ()
the second word into the .
PSW/INT_MASK register-pair. This
instruction increments the SP by 4.
Interrupt-calls cannot occur immediately
following this instruction.
INT_MASK1/WSR « (SP)
SP«SP+2
PSW/INT_MASK « (SP)
SP« SP +2
POPF POP FLAGS. Pops the word on top of ,
the stack and places it into the PSW.
Interrupt-calls cannot occur immediately | POPF
following this instruction. (11110011)
(PSW) « (SP)
SP <SP +2
PUSH PUSH WORE. Pushes the word operand
onto the stack.
PUSH waop
SP «SP-2
(SP) « (DEST) (110010aa) (waop)

A-16

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

PUSHA

PUSH ALL. This instruction is used
instead of PUSHF, to support the eight
additional interrupts. It pushes two words
onto the stack — PSW/INT_MASK and
the word formed by the
INT_MASK1/WSR register-pair.

This instruction clears the PSW,
INT_MASK, and INT_MASK1 registers
and decrements the SP by 4. Interrupt-
calls cannot occur immediately following
this instruction.

SP« SP2

(SP) « PSW/INT_MASK
PSW/INT_MASK « 0
SP« SP2

(SP) « INT_MASK1/WSR
INT_MASK1 « 0

PUSHA
(11110100)

PUSHF

PUSH FLAGS. Pushes the PSW onto
the top of the stack, then sets it to zeros.
This implies that all interrupts are
disabled. Interrupt-calls cannot occur
immediately following this instruction.

SP« SP-2
(SP) « PSW/INT_MASK
PSW/INT_MASK < 0

PUSHF
(11110010)

RET

RETURN FROM SUBROUTINE. Pops
the PC off the top of the stack.

PC « (SP)

|SP—SP+2

RET
(11110000)

RST

RESET SYSTEM. Initializes the PSW to
zero, the PC to 2080H, and the SFRs to
their initial values. Executing this
instruction causes the RESET# pin to be
pulled low for 16 state times.

SFR Reset Status
Pin Reset Status
PSW « 0

PC « 2080H

RST
(11111111)

SCALL

SHORT CALL. Pushes the contents of
the program counter (the return address)
onto the stack, then adds to the program
counter the offset between the end of this
instruction and the target label. The offset
must be in the range of —1024 to +1023,
inclusive.

SP « SP-2
(SP) « PC
PC « PC + disp (Note 1)

SCALL cadd
(00101xxx) (disp-low)

SETC

' SET CARRY FLAG. Sets the carry flag.

Ce1

SETC
(11111001)

A-17

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHL

SHIFT WORD LEFT. Shifts the
destination word operand to the left as
many times as specified by the count
operand. The count may be specified
either as an immediate value in the range
of 0 to 15 (OFH), inclusive, or as the
content of any register with a value in the
range of 0 to 31 (1FH), inclusive. The
right bits of the result are filled with
zeroes. The last bit shifted out is saved in
the carry flag.

Temp <« (COUNT)

do while Temp =0
C « High order bit of (DEST)
(DEST) « (DEST) x 2
Temp « Temp — 1

end_while

SHL wreg,#count
(00001001) (count) (wreg)
or

SHL wreg,breg
(00001001) (breg) (wreg)

SHLB

SHIFT BYTE LEFT. Shifts the
destination byte operand to the left as
many times as specified by the count
operand. The count may be specified
either as an immediate value in the range
of 0 to 15 (OFH), inclusive, or as the
content of any register with a value in the
range of 0 to 31 (1FH), inclusive. The
right bits of the result are filled with
zeroes. The last bit shifted out is saved in
the carry flag.

Temp « (COUNT)

do while Temp =0
C « High order bit of (DEST)
(DEST) « (DEST) x 2
Temp « Temp — 1

end_while

SHLB breg,#count
(00011001) (count) (breg)
or

SHLB breg,breg
(00011001) (breg) (breg)

SHLL

SHIFT DOUBLE-WORD LEFT. Shifts the
destination double-word operand to the
left as many times as specified by the
count operand. The count may be
specified either as an immediate value in
the range of 0 to 15 (OFH), inclusive, or
as the content of any register with a
value in the range of 0 to 31 (1FH), 4
inclusive. The right bits of the result are
filled with zeroes. The last bit shifted out
is saved in the carry flag.

| Temp « (COUNT)

do while Temp #0
C « High order bit of (DEST)
(DEST) « (DEST) x 2
Temp « Temp —1

end_while

SHLL lreg,#count
(00001101) (count) (breg)
or

SHLL Ireg,breg

(00001101) (breg) (Ireg)

A-18

intel.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHR

LOGICAL RIGHT SHIFT WORD. Shifts
the destination word operand to the right
as many times as specified by the count
operand. The count may be specified
either as an immediate value in the range
of 0 to 15 (OFH), inclusive, or as the
content of any register with a value in the
range of 0 to 31.(1FH), inclusive. The left
bits of the result are filled with zeroes.
The last bit shifted out is saved in the
carry flag.

This instruction clears the sticky bit flag

at the beginning of the instruction. If at

any time during the shift a “1” is shifted

into the carry flag and another shift cycle

gccurs, the instruction sets the sticky bit
ag.

Temp « (COUNT)

do while Temp z0
C « Low order bit of (DEST)
(DEST) « (DEST)/2 (Note 2)
Temp « Temp —1

end_while

SHR wreg,#count
(00001000) (count) (wreg)
or

SHR wreg,breg
(00001000 (breg) (wreg)

SHRA

ARITHMETIC RIGHT SHIFT WORD.
Shifts the destination word operand to the
right as many times as specified by the
count operand. The count may be
specified either as an immediate value in
the range of 0 to 15 (OFH), inclusive, or
as the content of any register with a
value in the range of 0 to 31 (1FH),
inclusive. If the original high order bit
value was “0,” zeroes are shifted in. If the
value was “1,” ones are shifted in. The
halst bit shifted out is saved in the carry
ag.

This instruction clears the sticky bit flag

at the beginning of the instruction. If at

any time during the shift a “1” is shifted

into the carry flag and another shift cycle

?'ccurs, the instruction sets the sticky bit
ag.

Temp < (COUNT)

do while Temp #0
C « Low order bit of (DEST)
(DEST) « (DEST)/2 (Note 3)
Temp « Temp —1

end_while

SHRA" wreg,#count

(00001010) (count) (wreg)

or
SHRA wreg,breg
(00001010) (breg) (wreg)

A-19

intel.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHRAB

ARITHMETIC RIGHT SHIFT BYTE.
Shifts the destination byte operand to the
right as many times as specified by the
count operand. The count may be
specified either as an immediate value in
the range of 0 to 15 (OFH), inclusive, or
as the content of any register with a
value in the range of 0 to 31 (1FH),
inclusive. If the original high order bit
value was “0,” zeroes are shifted in. If the
value was “1,” ones are shifted in. The
Iﬂast bit shifted out is saved in the carry
ag.

This instruction clears the sticky bit flag

at the beginning of the instruction. If at

any time during the shift a “1” is shifted

into the carry flag and another shift cycle

gccurs, the instruction sets the sticky bit
ag.

Temp « (COUNT)

do while Temp =0
C = Low order bit of (DEST)
(DEST) « (DEST)/2 (Note 3)
Temp « Temp -1

end_while

SHRAB breg,#count
(00011010) (count) (breg)
or ,

SHRAB breg,breg
(00011010) (breg) (breg)

SHRAL

ARITHMETIC RIGHT SHIFT DOUBLE-
WORD. Shifts the destination double-
word operand to the right as many times
as specified by the count (rightmost)
operand. The count may be specified
either as an immediate value in the range
of 0 to 15 (OFH), inclusive, or as the
content of any register with a value in the
range of 0 to 31 (1FH), inclusive. If the
original high order bit value was “0,”
zeroes are shifted in. If the value was “1,”
ones are shifted in.

This instruction clears the sticky bit flag

at the beginning of the instruction. If at

any time during the shift a “1” is shifted

into the carry flag and another shift cycle

gccurs, the instruction sets the sticky bit
ag.

Temp « (COUNT)

do while Temp z0
C « Low order bit of (DEST)
(DEST) « (DEST)/2 (Note 3)
Temp « Temp — 1

end_while

SHRAL Ireg,#count
(00001110) (count) (ireg)
or

SHRAL Ireg,breg
(00001110) (breg) (Ireg)

A-20

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHRB

LOGICAL RIGHT SHIFT BYTE. Shifts
the destination byte operand to the right
as many times as specified by the count
operand. The count may be specified
either as an immediate value in the range
of 0 to 15 (OFH), inclusive, or as the
content of any register with a value in the
range of 0 to 31 (1FH), inclusive. The left
bits of the result are filled with zeroes.
The last bit shifted out is saved in the
carry flag.

This instruction clears the sticky bit flag

at the beginning of the instruction. If at

any time during the shift a “1” is shifted

into the carry flag and another shift cycle

gccurs, the instruction sets the sticky bit
ag.

Temp « (COUNT)

do while Temp =0
C « Low order bit of (DEST)
(DEST) « (DEST)/2 (Note 2)
Temp « Temp-1

end_while

SHRB breg,#count
(00011000) (count) (breg)
or

SHRB breg,breg
(00011000) (breg) (breg)

SHRL

LOGICAL RIGHT SHIFT DOUBLE-
WORD. Shifts the destination double-
word operand to the right as many times
as specified by the count operand. The
count may be specified either as an
immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register with a value in the range of 0 to
31 (1FH), inclusive. The left bits of the
result are filled with zeroes. The last bit
shifted out is saved in the carry flag.

This instruction clears the sticky bit flag

at the beginning of the instruction. If at

any time during the shift a “1” is shifted

into the carry flag and another shift cycle

gccurs, the instruction sets the sticky bit
ag.

Temp « (COUNT)

do while Temp #0
C « Low order bit of (DEST)
(DEST) « (DEST)/2 (Note 2)
Temp « Temp —1

end_while

SHRL Ireg,#count
(00001100) (count) (Ireg)
or

SHRL Ireg,breg
(00001100) (breg) (Ireg)

SJMP

SHORT JUMP. Adds to the program
counter the offset between the end of this
instruction and the target label, effecting
the jump. The offset must be in the range
of -1024 to +1023, inclusive.

PC « PC + disp (Note 1)

SJMP cadd
(00100xxx) (disp-low)

A-21

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

(3 operands)

source byte operand from the second,
stores the result in the destination
operand, and sets the carry flag as the
complement of borrow.

(DEST) « (SRC1) — (SRC2)

Mnemonic Operation Instruction Format
SKIP TWO BYTE NO-OPERATION. Does
nothing. Control passes to the next
sequt;entia'llggtructign.hTI'||1is is actugllloy a |SKIP breg
two-byte in which the second byte
can be any value and is simply ignored. | (00000000) (breg)
ST STORE WORD. Stores the value of the SRC, DEST
source (leftmost) word operand into the
destination (rightmost) operand. ST wreg, waop
(DEST) « (SRC) (110000aa) (waop) (wreg)
STB STORE BYTE. Stores the value of the SRC, DEST
source (leftmost) byte operand into the
destination (rightmost) operand. STB breg, baop
(DEST) « (SRC) (110001aa) (baop) (breg)
SuUB SUBTRACT WORDS. Subtracts the DEST, SRC
(2 operands) | source word operand from the
destilnatior:\ v(vjord operand, stor%s th% SUB wreg, waop
result in the destination operand, an
sets the carry flag as the complement of | (011010aa) (waop) (wreg)
borrow.
(DEST) « (DEST) - (SRC)
SuUB SUBTRACT WORDS. Subtracts the first DEST, SRC1, SRC2
(3 operands) | source word operand from the second,
stores tge regult in t’l;xe destir;lation A SUB Dwreg, Swreg, waop
operand, and sets the carry flag as the
cgmplement of borrow. v 1ag (010010aa) (waop) (Swreg) (Dwreg)
(DEST) « (SRC1) — (SRC2)
SUBB SUBTRACT BYTES. Subtracts the DEST, SRC
(2 operands) | source byte operand from the destination
gyte operand, stor%s th% result Ln the SuBB breg, baop
estination operand, and sets the carry
flag as the complement of borrow. (010110aa) (baop) (breg)
(DEST) « (DEST) — (SRC)
SuBB SUBTRACT BYTES. Subtracts the first DEST, SRC1, SRC2

SUBB Dbreg, Sbreg, baop
(010110aa) (baop) (Sbreg) (Dbreg)

SuBC

SUBTRACT WORDS WITH BORROW.
Subtracts the source word operand from
the destination word operand. If the carry
flag was clear, SUBC subtracts 1 from
the result. It stores the result in the
destination operand and sets the carry
flag as the complement of borrow.

(DEST) « (DEST) - (SRC) - (1-C)

DEST, SRC
SUBC wreg, waop
(101010aa) (waop) (wreg)

A-22

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SuBCB

SUBTRACT BYTES WITH BORROW.
Subtracts the source byte operand from
the destination byte operand. If the carry
flag was clear, SUBCB subtracts 1 from
the result. It stores the result in the
destination operand and sets the carry
flag as the complement of borrow.

(DEST) « (DEST) - (SRC) — (1-C)

DEST, SRC
SUBCB breg, baop
(101110aa) (baop) (breg)

TIUMP

TABLE INDIRECT JUMP. Causes
execution to continue at an address
selected from a table of addresses.

The first word register, TBASE, contains
the 16-bit address of the beginning of the
table. The second word register, INDEX,
contains the 16-bit address of a byte that
contains the index into the table. The
INDEX value must be between 0 and
128. The #byte operand, INDEX_MASK,
is 8-bit immediate data to mask INDEX.

INDEX_MASK is ANDed with INDEX to
determine the offset (OFFSET). OFFSET
is multiplied by two, then added to the
base address (TBASE) to determine the
destination address (DEST X).

[INDEX] AND INDEX_MASK = OFFSET
(2 x OFFSET) + TBASE = DEST X

PC « (DEST X)

TBASE, INDEX, INDEX_MASK
TIUMP wreg, [wreg], #byte
(11100010) (wreg) (#byte) [wreg]

TRAP

SOFTWARE TRAP. This instruction
causes an interrupt-call that is vectored
through location 2010H. The operation of
this instruction is not affected by the state
of the interrupt enable flag in the PSW (1).
Interrupt-calls cannot occur immediately
following this instruction.

SP « SP-2
(SP) « PC
PC « (2010H)

TRAP
(11110111)

NOTE: This instruction is not supported by
revision 1.2 of the 8096 assembly language.
The TRAP instruction is intended for use by
Intel-provided tools. These tools will not
support user-application of this instruction.

XCH

EXCHANGE WORD. Exchanges the
value of the source word operand with
that of the destination word operand.

| (DEST) « (SRC)

DEST, SRC
XCH wreg, waop

(00000100) (waop) (wreg)
(00001011) (waop) (wreg)

XCHB

EXCHANGE BYTE. Exchanges the
value of the source byte operand with
that of the destination byte operand.

(DEST) « (SRC)

DEST, SRC
XCHB breg, baop

(00010100) (baop) (breg)
(00011011) (baop) (breg)

A-23

lnte|® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-2. Instruction Set (Continued)

Mnemonic Operation Instruction Format

XOR LOGICAL EXCLUSIVE-OR WORDS. DEST, SRC
XORs the source word operand with the
desti|natior:1 vgjord operand and sdto_rl_?]s the | XOR wreg, waop
result in the destination operand. The

result has ones in the bit positions in (100001aa) (waop) (wreg)
which either operand (but not both) had a
“1” and zeros in all other bit positions.

(DEST) « (DEST) XOR (SRC)

XORB LOGICAL EXCLUSIVE-OR BYTES. DEST, SRC
XORs the source byte operand with the
destilnatiohn bdyte operand and s&orgrshthe XORB breg, baop
result in the destination operand. The

result has ones in the bit positions in (100101aa) (baop) (breg)
which either operand (but not both) had a
“1” and zeros in all other bit positions.

(DEST) « (DEST) XOR (SRC)

NOTES:

1. The displacement (disp) is sign-extended to 16 bits.
2. In this operation, DEST/2 represents unsigned division.
3. In this operation, DEST/2 represents signed division.

A-24

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Tables A-3 and A-4 define the abbreviations and symbols used in Tables A-5 and A-6.
Table A-5 shows the effect of each instruction on the Program Status Word flags, and Table
A-6 shows the effect of the PSW flags or a specified register bit on conditional jump
instructions. (For additional information about the PSW flags, refer to the Program Status

Word description in Appendix C.)

Table A-3. PSW Flag Abbreviations

Abbreviation PSW Flag Name
C Carry Flag
N Negative Flag
ST Sticky Bit Flag
\ Overflow Flag
VT Overflow-Trap Flag
V4 Zero Flag

Table A-4. PSW Flag Setting Symbols

Symbol Description
v The instruction sets or clears the flag, as appropriate.
— The instruction does not modify the flag.
d The instruction may clear the flag, if it is appropriate, but cannot set it.
T The instruction may set the flag, if it is appropriate, but cannot clear it.
1 The instruction sets the flag.
0 The instruction clears the flag.
? The instruction leaves the flag in an indeterminate state.

A-25

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

~ Table A-5. Effects of Instructions on PSW Flag Settings

PSW Flag Settings PSW Flag Settings
Mnemonic ZIN|C |V |VT|ST Mnemonic ZIN|C|V | VT|ST
ADD, ADDB VIV N]T = LCALL, — === |=|-
LD, LDB,
ADDC, ADDCB LN ||| T = LDBSE, LDBZE
AND, ANDB N{~Y]lo]lo|—]|— LJMP —_ = === 2
BMOV, BMOVI — === |—=|— MUL, MULB, — = ==]—=]?
MUL
BR (Indirect) —T=T=1=1=1= ULU, MULUB e
CLR, CLRB 1]o0lo|0]|—]|— NEG, NEGB —
N —_ | = = = —
CLRC —|—=]l0|—=|—|— op -
? —_— -] —
SLAVT N I N B R NORML K 0
CMP, CMPB N N N N T — NOT, NOTB ; . 0 0| —| —
CMPL \/ \/ \/ \/ ‘l _ OR,ORB 0 0 —_ —
DEC, DECB SV IRV EREVAR IRV N POP [TR S S .
DI POPA, POPF VIiN [NV
DIV, DIVB, =T~ T = PUSH — === ==
DIVU, DIVUB PUSHA,PUSHF | 0| 0|0 | 0| 0] O
DJNZ, DJNZW — === —=- RET =] === =
DPTS —|—=|=|=]|—=|- RST olo|lo|o]o]|oO
El e el el e I SCALL o e el el e
EPTS o el el el el SETC — =1 ==]—
EXT, EXTB Vivyiofo|—|— SHL,SHLB,SHLL | v [2 [Y [V | T | —
IDLPD SHR vio|~vl|o|—|V
legalKey | — | — | — | — | — | —
lMlegalkey | 0| O[O0 | 0| O[O SHRA, SHRAB, ViV |{~N|o|—]|V
SHRAL
e VIV NPT SHRB, SHRL Nlo|+N|oO V
INCB S RV VA VA N i —
SIMP — === =]=
JBC,JUBS,JC,UE, | — | — | —| —| —| —
JGE, JGT, JH, SKIP == =]=]=
JLE, JLT, JNC,
JNE, JNH, JNST ST, STB — == ===
JNV _ == === SUB, SUBB NIV NN T —
JNVT — == =]0 = SUBC, SUBCB LN NN T]=
JST, JV — | =] === = TIUMP — | = = ===
JVT — | —|=|—=10|— TRAP == =] =] =
XCH, XCHB = === =
XOR, XORB N|i~N|lolo|—]|—

A-26

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-6. Effect of PSW Flags or Specified Bits on Conditional Jump Instructions

~ Instruction Jumps to Destination if Continues if
DJNZ decremented byte # 0 decremented byte = 0
DJNZW decremented word =0 decremented word = 0
JBC specified register bit = 0 specified register bit = 1
JBS specified register bit = 1 specified register bit = 0
JNC C=0 C=1

JNH C=00RZ=1 C=1ANDZ=0

JC C=1 C=0

JH C=1ANDZ=0 C=00RZ=1

JGE N=0 N=1
JGT N=0ANDZ=0 N=10ORZ=1

JLT N=1 N=0

JLE N=10ORZ=1 N=0ANDZ=0
JNST ST=0 ST=

JST ST=1 ST=0

JNV V=0 V=

Jv V=1 V=0

JNVT VT=0 VT =1 (clears VT)
JVT VT =1 (clears VT) VT=0

JNE Z=0 Z=1

JE Z=1 Z=0

A-27

|nte|® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-7 lists the instruction opcodes, in hexadecimal order, along with the corresponding
instruction mnemonics.

Table A-7. 8XC196KC/KD Instruction Opcodes

Hex Instruction Hex Instruction
Code Mnemonic Code Mnemonic

00 SKIP 28-2F | SCALL
01 CLR » 30-37 |JBC
02 NOT 38-3F |JBS
03 NEG 40 AND Direct (3 ops)
04 XCH 41 AND Immediate (3 ops)
05 DEC 42 AND Indirect (3 ops)
06 EXT 43 AND Indexed (3 ops)
07 INC 44 ADD Direct (3 ops)
08 SHR 45 ADD Immediate (3 ops)
09 SHL 46 ADD Indirect (3 ops)
0A SHRA . 47 ADD Indexed (3 ops)
0B XCH 48 SUB Direct (3 ops)
0oC SHRL 49 SUB Immediate (3 ops)
oD SHLL 4A SUB Indirect (3 ops)
OE SHRAL 4B SUB Indexed (3 ops)
OF NORML 4C MULU Direct (3 ops)
10 Reserved 4D MULU Immediate (3 ops)
11 CLRB 4E MULU Indirect (3 ops)
12 NOTB 4F MULU Indexed (3 ops)
13 NEGB 50 ANDB Direct (3 ops)
14 XCHB 51 ANDB Immediate (3 ops)
15 DECB 52 ANDB Indirect (3 ops)
16 EXTB 53 ANDB Indexed (3 ops)
17 INCB 54 ADDB Direct (3 ops)
18 SHRB 55 ADDB Immediate (3 ops)
19 SHLB 56 ADDB Indirect (3 ops)
1A SHRAB 57 ADDB Indexed (3 ops)
1B XCHB 58 SUBB Direct (3 ops)
1C-1F | Reserved 59 SUBB Immediate (3 ops)
20-27 | SUIMP 5A SUBB Indirect (3 ops)

A-28

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-7. 8XC196KC/KD Instruction Opcodes (Continued)

Hex Instruction

Code Mnemonic
5B SUBB Indexed (3 ops)
5C MULUB Direct (3 ops)
5D MULUB Immediate (3 ops)
5E MULUB Indirect (3 ops)
5F MULUB Indexed (3 ops)
60 AND Direct (2 ops)
61 AND Immediate (2 ops)
62 AND Indirect (2 ops)
63 AND Indexed (2 ops)
64 ADD Direct (2 ops)
65 ADD Immediate (2 ops)
66 ADD Indirect (2 ops)
67 ADD Indexed (2 ops)
68 SUB Direct (2 ops)
69 SUB Immediate (2 ops)
6A SUB Indirect (2 ops)
6B SUB Indexed (2 ops)
6C MULU Direct (2 ops)
6D MULU Immediate (2 ops)
6E MULU Indirect (2 ops)
6F MULU Indexed (2 ops)
70 ANDB Direct (2 ops)
71 ANDB Immediate (2 ops)
72 ANDB Indirect (2 ops)
73 ANDB Indexed (2 ops)
74 ADDB Direct (2 ops)
75 ADDB Immediate (2 ops)
76 ADDB Indirect (2 ops)
77 ADDB Indexed (2 ops)
78 SUBB Direct (2 ops)
79 SUBB Immediate (2 ops)
7A SUBB Indirect (2 ops)
7B SUBB Indexed (2 ops)

A-29

Hex Instruction
Code Mnemonic
7C MULUB Direct (2 ops)

7D MULUB Immediate (2 ops)
7E MULUB Indirect (2 ops)
7F MULUB Indexed (2 ops)
80 OR Direct

81 OR Immediate
82 OR Indirect

83 OR Indexed

84 XOR Direct

85 XOR Immediate
86 XOR Indirect

87 XOR Indexed

88 CMP Direct

89 CMP Immediate
8A CMP Indirect

8B CMP Indexed

8C DIVU Direct

8D DIVU Immediate
8E DIVU Indirect

8F DIVU Indexed

90 ORB Direct

91 ORB Immediate
92 ORB Indirect

93 ORB Indexed

94 XORB Direct

95 XORB Immediate
96 XORB Indirect
97 XORB Indexed
98 CMPB Direct

99 CMPB Immediate
9A CMPB Indirect
9B CMPB Indexed
9C DIVUB Direct

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-7. 8XC196KC/KD Instruction Opcodes (Continued)

Hex Instruction

Code Mnemonic
9D DIVUB Immediate
9E DIVUB Indirect
oF DIVUB Indexed
AO LD Direct
A1 LD Immediate
A2 LD Indirect
A3 LD Indexed
Ad ADDC Direct
A5 ADDC Immediate
A6 ADDC Indirect
A7 ADDC Indexed
A8 SUBC Direct
A9 SUBC Immediate
AA SUBC Indirect
AB SUBC Indexed
AC LDBZE Direct
AD LDBZE Immediate
AE LDBZE Indirect
AF LDBZE Indexed
BO LDB Direct
B1 LDB Immediate
B2 LDB Indirect
B3 LDB Indexed
B4 ADDCB Direct
B5 ADDCB Immediate
B6 ADDCB Indirect
B7 ADDCB Indexed
B8 SUBCB Direct
B9 SUBCB Immediate
BA SUBCB Indirect
BB SUBCB Indexed
BC LDBSE Direct
BD LDBSE Immediate

A-30

Hex Instruction

Code Mnemonic
BE LDBSE Indirect
BF LDBSE Indexed
Co ST Direct
C1 BMOV
c2 ST Indirect
C3 ST Indexed
C4 STB Direct
C5 CMPL
Cé STB Indirect
c7 STB Indexed
Cc8 PUSH Direct
C9 PUSH Immediate
CA PUSH Indirect
CB PUSH Indexed
cC POP Direct
CD BMOVI
CE POP Indirect
CF POP Indexed
DO JNST
D1 JNH
D2 JGT
D3 JNC
D4 JNVT
D5 JNV
D6 JGE
D7 JNE
D8 JST
D9 JH
DA JLE
DB JC
DC JVT
DD JV
DE JLT

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-7. 8XC196KC/KD Instruction Opcodes (Continued)

Hex Instruction
Code Mnemonic
DF JE
EO DJNZ
E1 DJNZW
E2 TIUMP
E3 BR (Indirect)
E4-E6 | Reserved
E7 LJMP
E8-EB | Reserved
EC DPTS
ED EPTS
EE Reserved *
EF LCALL
FO RET
F1 Reserved

* Opcode EE is reserved; however, it does not
generate an unimplemented opcode interrupt.

Table A-8 is a map of the 8XC196KC/KD opcodes. The first digit of the opcode is listed
vertically, and the second digit is listed horizontally. The related instruction mnemonic is

Hex Instruction
Code Mnemonic
F2 PUSHF
F3 POPF
F4 PUSHA
F5 POPA
F6 IDLPD
F7 TRAP
F8 CLRC
F9 SETC
FA DI
FB El
FC CLRVT
FD NOP
FE *DIV/DIVB/MUL/MULB
FF RST

* Signed multiplication and division are two-
byte instructions. For each signed instruction,
the first byte is “FE” and the second is the
opcode of the corresponding unsigned
instruction. For example, the opcode for
MULU (3 operands) direct is “4C,” so the
opcode for MUL (3 operands) direct is “FE

4C.”

shown at the intersection of the two digits. Shading indicates reserved opcodes.

A-31

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-8. 8XC196KC/KD Opcode Map (Left Half)

Op- x0 x1 x2 x3 x4 x5 x6 x7
code
0x SKIP CLR NOT NEG XCH DEC EXT INC
di
1x CLRB | NOTB | NEGB | XCHB | DECB | EXTB INCB
di
2x SJMP
3x JBC
bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

4x AND 3op ADD 3op

di im in ix di im in ix
5x ANDB 3o0p ADDB 3op

di im in ix di im in iX
6x ‘ AND 20p ADD 20p

di im in iX di im in ix
7x ANDB 20p ADDB 20p

di im in ix “di im in ix
8x OR XOR

di im in ix di im in ix
9x ORB XORB

di im in ix di im in ix
Ax LD ADDC

di- im in ix di im in ix
Bx LDB ADDCB

di im in ix di im in ix
Cx ST BMOV ST STB CMPL STB

di in iX di in ix
Dx JINST JNH JGT JNC JNVT JNV JGE JNE
Ex DJINZ | DJNZW | TIJMP BR

in

Fx RET PUSHF | POPF | PUSHA | POPA | IDLPD | TRAP

Shading indicates reserved opcodes.

A-32

ntd«m 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-8. 8XC196KC/KD Opcode Map (Right Half)

Op- x8 x9 xA xB xC xD xE xF
code
0x SHR SHL SHRA | XCH SHRL | SHLL | SHRAL | NORML
1x SHRB | SHLB | SHRAB
2x
3x JBS
bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
4x SUB 3o0p MULU 3op *
di im in ix di im in ix
5x SUBB 30p MULUB 3op *
di “im in ix di im in ix
6x SUB 20p MULU 20p *
di im in ix di im in iX
7x SUBB 20p MULUB 20p *
di im in ix di im in iX
8x CMP DIVU *
di im in ix di im in ix
9x ‘ CMPB pivus *
di im in ix di im in ix
Ax SuBC LDBZE
di im in ix di im in ix
Bx SUBCB LDBSE
di im in ix di im in ix
Cx PUSH POP | BMOVI POP
di im in ix di in ix
Dx JST JH JLE JC JVT Jv JLT JE
Ex DPTS | EPTS LCALL
Fx CLRC | SETC DI El CLRVT | NOP | signed RST
multiply/
divide*

* Signed multiplication and division are two-byte instructions. The first byte is “FE” and the second is the
oPoode of the corresponding unsigned instruction.
** Opcode EE is reserved, but it does not generate an unimplemented opcode interrupt.

A-33

|nte|® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-9 lists instructions along with their lengths and opcodes for each applicable
addressing mode. There are two columns for each addressing mode. The first column lists
the instruction length, and the second column lists the hexadecimal opcodes. For indexed
instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length. A dash in any column (—)
indicates “not applicable.”

Table A-9. Instruction Lengths and Hexadecimal Opcodes

Arithmetic (Group |)
Mnemonic Direct Immediate Indirect Indexed
M sL M
ADD (2 ops) 3 64 4 65 3 66 4/5 67
ADD (3 ops) 4 44 5 45 4 46 5/6 47
ADDB (2 ops) 3 74 3 75 3 76 4/5 77
ADDB (3 ops) 4 54 4 55 4 56 5/6 57
ADDC 3 A4 4 A5 3 A6 4/5 A7
ADDCB 3 B4 3 B5 3 B6 4/5 B7
CMP 3 88 4 89 3 8A 4/5 8B
CMPB 3 98 3 99 3 9A 4/5 9B
SUB (2 ops) 3 68 4 69 3 6A 4/5 6B
SUB (3 ops) 4 48 5 49 4 4A 5/6 4B
SUBB (2 ops) 3 78 3 79 3 7A 4/5 7B
SUBB (3 ops) 4 58 4 59 4 5A 5/6 5B
SUBC 3 A8 4 A9 3 AA 4/5 AB
SUBCB 3 B8 3 B9 3 BA 4/5 BB

A-34

integl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-9. Instruction Lengths and Hexadecimal Opcodes (Continued)

Arithmetic (Group Il)

Mnemonic Direct Immediate Indirect Indexed
(1) sL M
DIV 4 FE 8C 5 FE 8D 4 FE 8E 5/6 FE 8F
DIvB 4 FE 9C 4 FE 9D 4 FE 9E 5/6 FE 9F
DIVU 3 8C 4 8D 3 8E 4/5 8F
DIVUB 3 9C 3 9D 3 9E 4/5 9F
MUL (2 ops) 4 FE 6C 5 FE 6D 4 F36E | 56 | FE6F
MUL (3 ops) 5 FE 4C 6 FE 4D 5 FE 4E 6/7 FE 4F
MULB (2 ops) 4 FE 7C 4 FE 7D 4 FE7E | 56 | FE7F
MULB (3 ops) 5 FE 5C 5 | FES5D 5 FE 5E 6/7 FE 5F
MULU (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MULU (3 ops) 4 4C 5 4D 4 4E 5/6 4F
MULUB (2 ops) 3 7C 3 7D 3 7E 4/5 7F
MULUB (3 ops) 4 5C 4 5D 4 5E 5/6 5F
Logical .
Mnemonic Direct Immediate Indirect Indexed
() sL M

AND (2 ops) 3 60 4 61 3 62 4/5 63
AND (3 ops) 4 40 5 41 4 42 5/6 43
ANDB (2 ops) 3 70 3 71 3 72 4/4 73
ANDB (3 ops) 4 50 4 51 4 52 5/5 53
OR 3 80 4 81 3 82 4/5 83
ORB 3 90 3 91 3 92 4/5 93
XOR 3 84 4 85 3 86 4/5 87
XORB 3 94 3 95 3 96 4/5 97

A-35

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-9. Instruction Lengths and Hexadecimal Opcodes (Continued)

Stack
Mnemonic Direct Immediate Indirect Indexed
: (1 sL M
POP 2 cC — — 2 CE 3/4 CF
POPA — — — — F5 — —
POPF — — — — 1 F3 — —
PUSH 2 c8 3 C9 2 CA 3/4 cB
PUSHA — — — — 1 F4 — —
PUSHF —_ — — — 1 F2 — —
Data .
Mnemonic Direct Immediate Indirect indexed
(1) sL M
LD 3 A0 4 A1 3 A2 4/5 A3
LDB 3 BO 3 B1 3 B2 45 | B3
LDBSE 3 BC 3 BD 3 BE 4/5 BF
LDBZE 3 AC 3 AD 3 AE 4/5 AF
ST 3 co — — 3 c2 4/5 C3
STB 3 c4 — — 3 Cé6 | 455 c7
XCH 3 04 — — — — 4/5 0B
XCHB 3 14 — — — — 4/5 1B
Jump
Mnemonic Direct Immediate Indirect Indexed
(1) sL M
BR (Indirect) — — — — 2 E3 2 E3
LJMP - - — — — — —2 | E7@
SJMP — — — — — — 2/— 20&)27
TIJMP 4 E2 4 E2 — — —/4 E2

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-9. Instruction Lengths and Hexadecimal Opcodes (Continued)

Call
Mnemonic . Direct Immediate Indirect Indexed
(1) sL M
LCALL — — — — — — —3 | FF@
SCALL — — — — — — 2/— 28&,2F
RET - — — — 1 FO — —
TRAP 1 F7 — — — — — —
Conditional Jump
Mnemonic Direct Immediate Indirect Indexed
() sL M
DJNZ — — — — — — 3/— EO
DJNZW - — — — — — 3/— E1
JBC — — — — — — 3/~ | 30-37
JBS — — — — — — 3/— | 38-3F
JC — — — — — — 1/— | DB
JE — — — — — — 1/— DF
JGE — — — — — — 1/— D6
JGT — — — — — — 1/— D2
JH — — — — — — 1/— D9
JLE — — — — — — 1/— DA
JLT - — — — — — 1/— DE
JNC — — - — —_ — 1/— | D3
JNE — — — — — — 1/— D7
JNH — — — — — — 1/— D1
JNST — — — — — — 1/— DO
JNV — — — — — — 1/— D5
JNVT — — — — — — 1/— D4
JST — — — — — — 1/— D8
JV — — — — — — 1/— DD
JVT — — — — — — 1/— DC

A-37

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-9. Instruction Lengths and Hexadecimal Opcodes (Continued)

Shift
Mnemonic Direct Immediate Indirect Indexed
) sL O
NORML 3 OF — — — — — —
SHL 3 09 — — — — — —
SHLB 3 19 — — — — — —
SHLL 3 oD — — — — — —
SHR 3 08 — — — — — —
SHRA 3 0A — — — — — —
SHRAB 3 1A — — — — — —
SHRAL 3 OE — — — — — —
SHRB 3 18 — — — — — —
SHRL 3 oc — — — — — —
Block
Mnemonic Direct Immediate Indirect Indexed
) sL ™M
BMOV — — — — — — —/3 C1
BMOVI — — — — — — —/3 CD
Special
Mnemonic Direct Immediate Indirect Indexed
(1) sL M
CLRC 1 F8 — — — — - —
CLRVT 1 FC — — — — — —
DI 1 FA — — — — — —
El A FB — — — — — —
IDLPD — — 1 F6 — — — —
NOP 1 FD — — — — — —
RST 1 FE — — — — — —
SETC 1 F9 — — — — — .
SKIP 2 00 — — — — — —
PTS
Mnemonic Direct Immediate Indirect Indexed
(1) s/L (M
DPTS 1 EC — — — — — —
EPTS 1 ED — — — — — —

A-38

lntel ® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-9. Instruction Lengths and Hexadecimal Opcodes (Continued)

Single
Mnemonic Direct Immediate Indirect Indexed
(1) sL
CLR | — 01 — — — — — —
CLRB — 11 — — — — — —
CMPL — C5 — — — — — —
DEC — 05 — — — — - | -
DECB — 15 — — — — — —
EXT — 06 — — — — — —
EXTB — 16 —_ — — — — —
INC — 07 — — — — — —
INCB — 17 —_ — — — — —
NEG — 03 — — — — — | -
NEGB — 13 — — — — — —
NOT — 02 | — — — — — —
NOTB — 12 — — — — — —
NOTES:

1. Indirect normal and indirect auto-increment share the same opcodes, as do short- and long-indexed
modes. To use indirect normal or short-indexed mode, the second byte of the instruction must be even.
To use indirect auto-increment or long-indexed mode, the second byte of the instruction must be odd.

2. For these instructions (SCALL, SUMP, LCALL, LUMP), the 3 least-significant bits of the opcode are
concatenated with the 8 bits to form an 11-bit, 2's complement offset.

A-39

I nU ® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10 lists instructions alphabetically within groups, along with their execution times,
expressed in state times. The table denotes execution times for indirect and indexed
addressing modes as R/M, where R is the execution time using SFRs and internal RAM
(OH-1FFH) and M is the execution time using the memory controller (200H-OFFFFH).

Table A-10. 8XC196KC/KD Instruction Execution Times (in State Times)

Arithmetic (Gfoup 1)
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
ADD (2 ops) 4 5 6/8 7/9 6/8 7/9
ADD (3 ops) 5 6 7/10 8/11 7/10 8/11
ADDB (2 ops) 4 5 6/8 7/9 6/8 7/9
ADDB (3 ops) 5 6 7110 8/11 7/10 8/11
ADDC 4 5 6/8 7/9 6/8 7/9
ADDCB 4 5 6/8 7/9 6/8 7/9
CMP 4 5 6/8 7/9 6/8 7/9
CMPB 4 5 6/8 7/9 6/8 7/9
SUB (2 ops) 4 5 6/8 7/9 6/8 7/9
SUB (3 ops) 5 6 7110 8/11 7110 8/11
SUBB (2 ops) 4 5 6/8 7/9 6/8 7/9
SUBB (3 ops) 5 6 7110 8/11 7110 8/11
SuBC 4 5 6/8 7/9 6/8 7/9
SUBCB 4 5 6/8 7/9 6/8 7/9

A-40

Intdé 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10. 8XC196KC/KD Instruction Execution Times (Continued)

Arithmetic (Group II)
Indirect Indexed

Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
DIV 26 27 28/31 29/32 29/32 30/33
DIVB 18 18 20/23 21/24 21/24 22/25
DIVU 24 25 26/29 27/30 27/30 28/31
DIVUB 16 16 18/21 19/22 19/22 20/23
MUL (2 ops) 16 17 18/21 19/22 19/22 20/23
MUL (3 ops) 16 17 18/21 19/22 19/22 20/23
MULB (2 ops) 12 12 14/17 15/18 15/18 16/19
MULB (3 ops) - 12 12 14/17 15/18 15/18 16/19
MULU (2 ops) 14 15 16/19 17/19 17/20 18/21
MULU (3 ops) 14 15 16/19 17/19 17/20 18/21
MULUB (2 ops) 10 10 12115 13/15 12/16 14/17
MULUB (3 ops) 10 10 15/15 12/16 12/16 14/17

Logical
Indirect Indexed

Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
AND (2 ops) 4 5 6/8 7/9 6/8 7/9
AND (3 ops) 5 6 7110 8/11 710 8/11
ANDB (2 ops) 4 5 6/8 7/9 6/8 7/9
ANDB (3 ops) 5 6 7110 8/11 7110 8/11
OR 4 5 6/8 7/9 6/8 7/9
ORB 4 5 6/8 7/9 6/8 7/9
XOR 4 5 6/8 7/9 6/8 7/9
XORB 4 5 6/8 7/9 6/8 7/9

A-41

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10. 8XC1 96KC/KD Instruction Execution Times (Continued)

Stack (Internal Stack)

Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-inc.| Short Long
POP 8 - — 1012 | 1143 1113 12/14
POPA 12 — — — — —
POPF 7 — — — — —
PUSH 6 7 9/12 10/13 10/13 11/14
PUSHA 12 — — — — —
PUSHF 6 — — — — —
Stack (External Stack)
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
POP 11 — 13/15 14/16 14/16 15/17
POPA 18 — — — — —
POPF 10 — — — — —
PUSH 8 9 11/14 12/15 12/15 13/16
PUSHA 18 — — — — —
PUSHF 8 — — — — —
Data
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
LD 4 5 5/8 6/8 6/9 7110
LDB 4 5 5/8 6/8 6/9 7110
LDBSE 4 4 5/8 6/8 6/9 7/10
LDBZE 4 4 5/8 6/8 6/9 7/10
ST 4 — 5/8 6/9 6/9 7/10
STB 4 — 5/8 6/9 6/9 7/10
XCH 5 — — — 8/13 9/14
XCHB 5 — — — 8/13 9/14

A-42

intgl.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10. 8XC196KC/KD Instruction Execution Times (Continued)

Jump
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-inc.| Short Long
BR (Indirect) — — 7 7 7 7
LJMP — — — — — 7
SJMP — — — — 7 —
TIJMP — — — —
internal/internal 15 15
external/internal 18 18
external/external 21 21
Call (Internal Stack)
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
LCALL — — — — — 11
RET — — 11 — — —
SCALL — — — — 11 —
TRAP 16 — — — — —
Call (External Stack)
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
LCALL — — — — — 13
RET — — 14 — — —
SCALL — — — — 13 —
TRAP 18 — — — — —

A-43

| ntd ® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10. 8XC196KC/KD Instruction Execution Times (Continued)

Conditional Jump
Mnemonic | Short-Indexed
DJNZ 5 (jump not taken), 9 (jump taken)
DJNZW
80C196KC only | 7 (jump not taken), 11 (jump taken)
8XC196KC/KD | 6 (jump not taken), 10 (jump taken)

JBC 5 (jump not taken), 9 (jump taken)
JBS 5 (jump not taken), 9 (jump taken)
JC 4 (jump not taken), 8 (jump taken)
JE 4 (jump not taken), 8 (jump taken)
JGE 4 (jump not taken), 8 (jump taken)
JGT 4 (jump not taken), 8 (jump taken)
JH 4 (jump not taken), 8 (jump taken)
JLE 4 (jump not taken), 8 (jump taken)
JLT 4 (jump not taken), 8 (jump taken)
JNC 4 (jump not taken), 8 (jump taken)
JNE 4 (jump not taken), 8 (jump taken)
JNH 4 (jump not taken), 8 (jump taken)
JNST 4 (jump not taken), 8 (jump taken)
JNV 4 (jump not taken), 8 (jump taken)
JNVT 4 (jump not taken), 8 (jump taken)
JST 4 (jump not taken), 8 (jump taken)
Jv 4 (jump not taken), 8 (jump taken)
JVT 4 (jump not taken), 8 (jump taken)

A-44

intal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10. 8XC196KC/KD Instruction Execution Times (Continued)

Shift
Mnemonic | Direct
NORML 8 + 1 per shift (9 for 0 shift)
SHL 6 + 1 per shift (7 for O shift)
SHLB 6 + 1 per shift (7 for 0 shift)
SHR 6 + 1 per shift (7 for 0 shift)
SHRA 6 + 1 per shift (7 for 0 shift)
SHRAB 6 + 1 per shift (7 for 0 shift)
SHRAL 7 + 1 per shift (8 for 0 shift)
SHRB 6 + 1 per shift (7 for 0 shift)
SHRL 7 + 1 per shift (8 for 0 shift)
Block
Mnemonic Long-indexed
BMOV internal/internal 6 + 8 per word
external/internal 6 + 11 per word
external/external 6 + 14 per word
BMOVI internal/internal -~ 7 + 8 per word + 14 per interrupt
externalfinternal 7 + 11 perword + 14 per interrupt .
external/external 7 + 14 per word + 14 per interrupt
Special
Indirect Indexed
Mnemonic Direct Immed. | Normal | Auto-Inc.| Short Long
CLRC 2 —_ — — — —
CLRVT 2 — — — — —
DI 2 — — — — —
El 2 — — — — —
IDLPD
Valid key — 8 — — — —
Invalid key —_— 25 —_ — — —
NOP 2 — — — — —
RST 20 — — — — —_
(including fetch
of configuration
byte)
SETC 2 —_ — — — —
SKIP 3 — — — — —

A-45

ntal.

8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-10. 8XC196KC/KD Instruction Execution Times (Continued)

PTS

Mnemonic

Direct

Immed.

Indirect

Indexed

Normal

Auto-inc.

Short

Long

DPTS

2

EPTS

2

Single

Mnemonic

Direct

Indirect

Indexed

Normal

Auto-inc.

Short

Long

CLR

CLRB

CMPL

DEC

DECB

EXT

EXTB

INC

INCB

NEG

NEGB

NOT

NOTB

W W W W[W|W]|Pd|P|W|WIN]®

A-46

|nte|® 8XC196KC/KD INSTRUCTION SET REFERENCE

Table A-11. 8XC196KC/KD PTS Cycle Execution Times

PTS Cycles
PTS Mode Execution Time (in State Times)
Single Transfer mode :
internal/internal 18
external/internal 21
external/external 24

Block Transfer mode

SFRs/Internal RAM
Memory Controller

internal/internal 13 + 7 per transfer (1 minimum)

external/internal .16 + 7 per transfer (1 minimum)

external/external 19 + 7 per transfer (1 minimum)
A/D Scan mode

21
25

HSI mode
SFRs/Internal RAM
Memory Controller

12 + 10 per transfer (1 minimum)
16 + 10 per transfer (1 minimum)

HSO mode
SFRs/Internal RAM
Memory Controller

11 + 10 per transfer (1 minimum)
15 + 10 per transfer (1 minimum)

A-47

8XC196KC/KD INSTRUCTION SET REFERENCE

