Interrupts

CHAPTER 5
INTERRUPTS

A microcontroller’s primary function is to provide real-time control of an instrument or
device. The interrupt control circuitry within a microcontroller permits real-time events to
control program flow. When an event generates an interrupt, the CPU services the interrupt
before executing the next instruction. An internal peripheral, an external signal, or an
instruction can request an interrupt. In the simplest case, the 8XC196KC/KD receives the
request, performs the service, and returns to the task that was interrupted. This chapter
describes the interrupt control circuitry, priority scheme, and timing. It also describes the
three special interrupts and explains interrupt programming and control.

5.1. INTERRUPT PROCESSING

The 8XC196KC/KD provides two interrupt service options: software interrupt service
routines via the Interrupt Controller and microcoded hardware interrupt processing via the
Peripheral Transaction Server (PTS). You can select either option for each of the maskable
interrupts. (See “Selecting Either PTS or Standard Interrupt Service” on page 5-10.) The
nonmaskable interrupts (NMI, Software Trap, and Unimplemented Opcode) are always
serviced by interrupt service routines. Figure 5-1 illustrates the interrupt processing flow.

5.1.1. Interrupt Controller

The Interrupt Controller services interrupts with software interrupt service routines. When
the hardware detects an interrupt, it generates and executes a special interrupt call. This
pushes the contents of the program counter onto the stack and then loads it with the contents
of the appropriate interrupt vector. The Upper and Lower Interrupt Vectors in Special-
Purpose memory (see Chapter 4, “Memory Partitions”) contain the addresses of the interrupt
service routines. The CPU executes the interrupt service routine. Upon completion of the
service routine, the program counter is reloaded from the stack and program execution
continues.

5.1.2. Peripheral Transaction Server (PTS)

The Peripheral Transaction Server (PTS) is a microcoded hardware interrupt handler. It can
be used in place of a standard interrupt service routine for each of the maskable interrupts.
The PTS services interrupts with less overhead; it does not modify the stack or the PSW,
and it allows normal instruction flow to continue. For these reasons, the PTS can service an
interrupt in the time required to execute a single instruction.

The PTS operates in five special microcoded modes that enable the PTS to complete the

specific tasks in much less time than an interrupt service routine. See the “PTSCON”
section on page 5-16 for a description of the PTS modes.

5-1

|nte|® INTERRUPTS

Transition
Detected

Y

Set Int.
Pending Bit

NMI Pending
Bit = 1

Int.
Mask Bit
ot

PTS
“Select Bit
=1

Global
Int. Enable
=1

No
Interrupt

PTS Enable

No Interrupt

Global

-1 No

Any
PTS Requests

Highest Priority
Standard Interrupt

Y

Interrupt
|
I Priority
: Encoder
|
|
|
|
|
1
1Y
|
! Highest Priority
|

PTS Interrupt

TRAP ——| Interrupt PTS
Unimplemented —» Vector Vector
P Table Table
Opcode

v |
Interrupt PTS
Service Control
Routine Block

A0137-C0

Figure 5-1. 8XC196KC/KD Flow Diagram for PTS and Standard Interrupts

5-2

“'IteI@ INTERRUPTS

Each PTS interrupt requires a block of data called the PTS Control Block (PTSCB). When a
PTS interrupt occurs, the priority encoder selects the appropriate vector and fetches the PTS
Control Block (PTSCB). The PTSCB determines the mode, the total number of transfers (if
applicable), the total number of cycles that will execute before the PTS requires servicing,
and the source and/or destination of data transfers (if applicable). Each PTS interrupt
generates one PTS cycle. Figure 5-2 shows the PTS cycle flow.

PTS Interrupt

l

1 PTS Cycle

l

Decrement
PTSCOUNT

RET to
Program

A

PTSCOUNT
=0 ?

Clear
PTSSEL
Bit

l

Set
PTSSRV
Bit

!

Generate
End-of-PTS
Interrupt

A0171-A0

Figure 5-2. PTS Cycle Flow Diagram

5-3

|nte|® INTERRUPTS

5.2. INTERRUPT PRIORITIES

The Unimplemented Opcode and Software Trap interrupts are not prioritized; they go
directly to the Interrupt Controller for servicing. The Interrupt Controller selects the
corresponding vector location in Special-Purpose memory (see Chapter 4, “Memory
Partitions”). The vector contains the starting address of the interrupt service routine.

The Priority Encoder determines the priority of all other pending interrupt requests. Table
5-1 shows the default interrupt priorities (15 is highest and 1 is lowest). NMI has the highest
priority of all prioritized interrupts. If an NMI is pending, the Priority Encoder selects it as
the highest priority request, and the Interrupt Controller selects the corresponding vector
location in Special-Purpose memory (see Chapter 4). The vector contains the starting
address of the corresponding interrupt service routine.

Any PTS interrupt request has a higher priority than all maskable standard interrupt
requests. If no NMI request is pending, the Priority Encoder determines the highest priority
PTS interrupt service request, and the Interrupt Controller selects the corresponding PTS
vector location in Special-Purpose memory. The vector contains the starting address of the
corresponding PTS control block (PTSCB).

If no NMI or PTS request is pending, the Priority Encoder determines the highest priority
standard interrupt request, and the Interrupt Controller selects the corresponding vector
location in Special-Purpose memory. The vector contains the starting address of the
corresponding interrupt service routine.

5.2.1. Modifying Interrupt Priorities

The software can modify the default priorities of maskable interrupts by controlling the
interrupt mask registers (INT_MASK and INT_MASK1). For example, you can specify
which interrupts, if any, can interrupt an interrupt service routine or PTS cycle. The
following code shows one way to prevent all interrupts, except EXTINT (priority 7), from
interrupting a Receive interrupt service routine (priority 9).

SERIAL RI_ISR:

pusha ; Save PSW, INT_MASK, INT_ MASKl, & WSR
di ; Disable all interrupts except EXTINT
ldb int_maskl, #00100000B ;

ei ; Enable interrupt servicing

; Service the RI interrupt
popa ; Restore PSW, INT MASK, INT_MASK1l, &

; WSR regs
ret

5-4

intal.

Note that location 2032H in the interrupt vector table would be loaded with the value of the
label SERIAL_RI_ISR, and that the Receive interrupt must be enabled for this routine to

INTERRUPTS

execute.

Table 5-1. 8XC196KC/KD Interrupt Vector Sources, Locations, and Priorities

‘Number | Interrupt Vector Source(s) Interrupt PTS Priority
Vector Vector (1)
Location | Location
Special Unimplemented Unimplemented Opcode 2012H — —
Opcode
Special | Software Trap TRAP Instruction 2010H — —
INT15 NMI (2) NMI 203EH — 15
Each of the following, maskable interrupts can be assigned to the PTS.
Any PTS interrupt has priority over all other maskable interrupts.
INT14 HSI FIFO Full HSI FIFO Full 203CH 205CH 14
INT13 EXTINT1 (2) pP2.2 203AH 205AH 13
INT12 Timer 2 Overflow Timer 2 Overflow 2038H 2058H 12
INT11 Timer 2 Capture (2) | Timer 2 Capture 2036H 2056H 1
INT10 HSI FIFO 4 HSI FIFO Fourth Entry 2034H 2054H 10
INTO9 Receive RI Flag (3) 2032H 2052H 9
INTO8 Transmit Tl Flag (3) 2030H 2050H 8
INTO7 EXTINT (2) P2.2 or P0.7 200EH 204EH 7
INTO6 Serial Port RI Flag and TI Flag (4) 200CH 204CH 6
INTO5 Software Timer Software Timer 0-3 200AH 204AH 5
Timer 2 Reset
A/D Conversion Start
INTO4 HSI.0 Pin (2) HSI.0 2008H 2048H 4
INTO3 High Speed Outputs | HSO.0-HSO.5 2006H 2046H
INT02 HSI Data Available | HSI FIFO Full or HSI 2004H 2044H 2
Holding Reg. Loaded
INTO1 A/D Conversion A/D Conversion 2002H 2042H 1
Complete Complete
INTOO Timer Overflow Timer 1 or Timer 2 2000H 2040H 0
NOTES:

1. The Unim@lemented Opcode and Software Trap interrupts are not prioritized. They go directly to the
ontroller for servicing. NMI has the highest priority of all prioritized interrupts. Any PTS
interrupt has priority over all other maskable interrupts.

Interrupt

These interrupts can be configured to function as independent, external interrupts.

If the Serial interrupt is masked and the Receive and Transmit interrupts are enabled, the Rl flag and TI

flag generate separate Receive and Transmit interrupts. If 8096BH compatibility is not an issue, this
configuration is preferred.

If the Receive and Transmit interrupts are masked and the Serial interrupt is enabled, both Rl flag and

Tl flag generate a Serial Port interrupt. This configuration provides compatibility with the 8096BH.

5-5

iﬂtel» INTERRUPTS

All 8XC196KC/KD interrupt service routines are handled in the following manner:

1. After the hardware detects and prioritizes an interrupt request, it generates and executes
a special intefrupt call. This pushes the program counter onto the stack and then loads it
with the contents of the vector corresponding to the highest priority, pending, unmasked
interrupt. The hardware will not allow another interrupt call until after the first
instruction of the interrupt service routine is executed.

2. The PUSHA instruction, which is guaranteed to execute, saves the contents of the PSW,
INT_MASKI1, and Window Select Register (WSR) onto the stack and then clears the
PSW and INT_MASKI1. In addition to the arithmetic flags, the PSW contains
INT_MASK register, the global interrupt enable bit (I), and the PTS enable bit (PSE).
Clearing the PSW and INT_MASK(1 register effectively masks all maskable interrupts,
disables standard interrupt servicing, and disables the PTS. The PUSHA instruction
inhibits interrupts calls until after the next instruction executes.

3. The LDB INT_MASKI1 instruction enables those interrupts that you choose to allow to
interrupt the service routine. In this example, only EXTINT can interrupt the Receive
interrupt service routine. By enabling or disabling interrupts, the software establishes its
own interrupt servicing priorities.

4. The EI instruction re-enables interrupt processing and inhibits interrupt calls until after
the next instruction executes.

5. The actual interrupt service routine executes within the priority structure established by
the software.

6. At the end of the service routine, the POPA instruction restores the original contents of
the PSW, INT_MASKI1, and WSR registers; any changes made to these registers during
the interrupt service routine are overwritten. Because interrupt calls cannot occur
immediately following a POPA instruction, the last instruction (RET) will execute
before another interrupt call can occur. It is quite likely that the POPA instruction will
re-enable a pending interrupt. If the Interrupt Controller serviced the pending interrupt
before the RET instruction executed, then the return address to the code that was
executing when the original interrupt occurred would be left on the stack. While this
does not present a problem to the program flow, it could result in a stack overflow if
interrupts occur at a high frequency.

Notice that the “preamble” and exit code for this routine does not save or restore register
RAM. The interrupt service routine is assumed to allocate its own private set of registers
from the lower Register File. The availability of 232 bytes of RAM in the lower Register
File makes this quite practical. In addition, the RAM in the upper Register File is available
via vertical windowing (see Chapter 4).

intgl.

5.3. INTERRUPT TIMING

INTERRUPTS

Five external sources can interrupt the 8XC196KC/KD. The Transition Detector samples the
interrupt inputs and latches the interrupt when a low-to-high transition occurs. The interrupt
input must be held high for the minimum pulse width to ensure recognition. Some interrupts
are sampled during Phase 1 (CLKOUT low); others are sampled during Phase 2 (CLKOUT
high). Table 5-2 lists both the minimum pulse width and the sample clock phase for each
external interrupt.

Table 5-2. 8XC196KC/KD Minimum Interrupt Pulse Width and Sample Clock Phase

Interrupt Source Interrupt Vector(s) Number | Minimum Sampled

Pulse Width | During

HSI.0 HSI.0 Pin INTO4 > 2 state times Phase 1
NMI NMI INT15 > 1 state time Phase 2
P0.7 EXTINT INTO7 > 2 state times Phase 1
P2.2 EXTINT INTO7 > 2 state times Phase 2
EXTINT1 ‘ INT13 > 2 state times Phase 2

Timer 2 Capture Timer 2 Capture INT11 > 2 state times Phase 2

Table 5-3 describes six instructions that always inhibit interrupts from being acknowledged

until after the next instruction is executed.

Table 5-3. Instructions that Inhibit Interrupts

Instruction Description
DI Disables interrupts
El Enables interrupts following the execution of the next statement.
POPA Pops two words off the top of the stack and places the first word into the

INT_MASK1/WSR register-pair and the second word into the PSW/INT_MASK
register pair. :

POPF instruction

Pops one word off the top of the stack and places it into the PSW/INT_MASK
register pair.

PUSHA Pushes the PSW, INT_MASK, INT_MASK1, and the Window Select Register
(WSR) onto the top of the stack, then clears the PSW, INT_MASK, and
INT_MASK1 registers.

PUSHF Pushes the PSW/INT_MASK register pair onto the top of the stack, then clears it.

Execution of any of the following also inhibits interrupts from being acknowledged until -

after the next instruction is executed:

e the signed prefix opcode (FE) for the two-byte, signed multiply and divide instructions

e the Unimplemented Opcode interrupt

e the Software Trap interrupt

5-7

Intelm INTERRUPTS

5.3.1. Interrupt Latency

~ Latency is the total delay between the time that the interrupt is generated (not
acknowledged) and the time that the 8XC196KC/KD begins executing the interrupt service
routine or PTS cycle. A delay occurs between the time that the interrupt is detected and the
time that it is acknowledged. An interrupt is not acknowledged until the current instruction
finishes executing. If the interrupt does not occur at least four state times before the end of
the current instruction, it may not be acknowledged until after the next instruction finishes.
This additional delay occurs because instructions are prefetched and prepared a few state
times before they are executed. Thus, the maximum delay between interrupt generation and
acknowledgment is four state times plus the execution time of the next instruction.

When a standard interrupt is acknowledged, the hardware clears the interrupt pending bit
and forces a call to the address contained in the corresponding interrupt vector after
completing the current instruction. The procedure that gets the vector and forces the call
requires 16 state times. If the stack is in external RAM, the call requires an additional 2
state times assuming a zero-wait-state bus. When a PTS interrupt is acknowledged, it
immediately vectors to the PTSCB and begins executing the PTS cycle.

5.3.2. Calculating Latency

The maximum latency occurs when the interrupt occurs too late for acknowledgment
following the current instruction. The following worst-case calculation assumes that the
current instruction does not inhibit interrupts (see Table 5-3). To calculate latency, add the
following terms:

e Four state times to allow the current instruction to finish

e The total number of state times for the next instruction; the longest instruction
(NORML) takes 39 state times

e The response time (16 state times for an internal stack or 18 for an external stack) for
standard interrupts only

5.3.2.1. STANDARD INTERRUPT LATENCY
The maximum delay for a standard interrupt is 61 state times (4 + 39 + 18). This delay time

does not include time needed to execute the first instruction in the interrupt service routine.
Figure 5-3 illustrates an example of this worst-case scenario.

5-8

|n'|'e|® INTERRUPTS

4 3 2 1« 39 >4 16 —P>-4¢—— 2 —P4¢— 12— P4¢+— 5 —>

ENDING | . END CALLIS IFSTACK | . { (FsTAack
EXECUTION ﬁNSTRUCTION NORML / / "NORML" | FORCED / / EXTERNAL | PUSHA / ﬁEHERNALN

EXTINT Interrupt Routine

PENDING
INT SET CLEARED

RESPONSE TIME |« 61 STATE TIMES >
A0136-00

Figure 5-3. Standard Interrupt Response Time
5.3.2.2. PTS INTERRUPT LATENCY
The maximum delay for a PTS interrupt is 43 state times (4 + 39). This delay time does not

include the added delay if the PTS is disabled (PSW.2 clear) or if a higher priority PTS
request is being serviced. See Table A-11 in Appendix A for the PTS cycle execution times.

4321 < 39 >
ENDING | iy » END VECTOR TOPTS
EXECUTION Swsmucnou NORML xg “NORML” | CONTROLBLOCK | F'° g& PTS &
EXTINT I _ PTSINTERRUPTROUTINE _
PENDING
BIT SET CLEARED

| LATENCY TIME

(——.—
RESPONSE TIME 43 STATE TIMES >

A0142-A0

Figure 5-4. PTS Interrupt Response Time
5.4. SPECIAL INTERRUPTS

The 8XC196KC/KD supports three special interrupts: Unimplemented Opcode, Software
Trap, and NMI. These interrupts are not affected by the interrupt enable bit (I) in the PSW
(PSW.1), and they cannot be masked. All of these interrupts are serviced by the Interrupt
Controller; they cannot be assigned to the PTS. Of these three, only NMI goes through the
Transition Detector and Priority Encoder. The other two special interrupts go directly to the
Interrupt Controller for servicing. Be aware that these interrupts are often assigned to
special functions in Intel development tools.

5-9

|nte|® INTERRUPTS

5.4.1. Unimplemented Opcode

If the CPU attempts to execute an unimplemented opcode, an indirect vector through
location 2012H occurs. This prevents random software execution during hardware and
software failures. The interrupt vector should contain the starting address of an error routine
that will not further corrupt an already erroneous situation. The Unimplemented Opcode
interrupt prevents other interrupts from being acknowledged until after the next instruction
is executed.

5.4.2. Software Trap

The TRAP instruction (opcode OF7H) causes an interrupt call that is vectored through
location 2010H. The TRAP instruction provides a single-instruction interrupt that is useful
when debugging software or generating software interrupts. The TRAP instruction prevents
other interrupts from being acknowledged until after the next instruction is executed.

5.4.3. NMI

The external NMI pin generates a Nonmaskable Interrupt for implementation of critical
interrupt routines. NMI has the highest priority of all the prioritized interrupts. It is passed
directly from the Transition Detector to the Priority Encoder, and it vectors indirectly
through location 203EH. The NMI interrupt is sampled during Phase 2 (CLKOUT high) and
is latched internally. If the pin is held high, multiple interrupts will not occur. If your system
does not use the NMI interrupt, ground the NMI pin to prevent spurious interrupts.

For design symmetry with the INT_PENDI1 register, an NMI mask bit exists in the
INT_MASKI1 register. However, the mask bit has no function; NMI is enabled for both
NMI_MASK set and NMI_MASK cleared. To ensure compatibility with future products,
always write zero to the NMI mask bit.

The NMI on the 8096BH vectors directly to location 0000H. For compatibility with 8096BH
software that uses the NMI, load 0000H into location 203EH.

5.5. PROGRAMMING THE INTERRUPTS

Table 5-4 lists the programmable registers that affect the performance and function of the
Interrupt Controller and PTS. Refer to Appendix C for detailed descriptions of these
registers.

5.5.1. Selecting Either PTS or Standard Interrupt Service

The PTS Select register (PTSSEL) selects either a PTS cycle or a standard software
interrupt service routine for each of the fifteen maskable interrupt requests. Setting a bit
selects a PTS cycle; clearing a bit selects a standard interrupt service routine. See Appendix
C for a detailed description of the PTSSEL register.

5-10

intgl.

INTERRUPTS

Table 5-4. Interrupt and PTS Control and Status Registers

Register Register Description
Mnemonic Name
INT_MASK Interrupt These registers enable/disable each maskable interrupt (that is, each
Mask interrupt except Unimplemented Opcode, Software Trap, and NMI.)
INT_MASK1 Registers
INT_PEND Interrupt The bits in this register are set by hardware to indicate that an interrupt
Pending is pending.
INT_PEND1 Registers
10C1 Input/Output | This register selects the source of the INT00, INT02, and INT07
Control interrupts.
Register 1
1081 Input/Output | This register contains flags that indicate which events triggered
Status interrupts.
Register 1
PSW Program This register contains one bit that globally enables or disables
Status Word | servicing of all maskabie interrupts and another that enables or
disables the PTS.
PTSSEL PTS Select | This register selects either a PTS cycle or a standard interrupt service
Register routine for each of the fifteen maskable interrupt requests.
PTSSRV PTS The bits in this register are set by hardware to request an end-of-PTS
Service interrupt.
Register

5.5.2. Enabling PTS Interrupts

After you assign an interrupt to the PTS, you must enable both the PTS and the individual
interrupt. The PTS enable (PSE) bit in the Program Status Word (PSW.2) globally enables
or disables the PTS. The EPTS instruction sets the bit, which enables the PTS. The DPTS
instruction clears the bit, which disables the PTS. The bits in INT_MASK and INT_MASK1
individually enable or disable the PTS interrupts (see Table 5-5).

5.5.3. Enabling Standard Interrupts

When you assign an interrupt to a standard software service routine, you must enable both
the servicing of the interrupt and the individual interrupt. The global interrupt enable (I) bit
in the Program Status Word (PSW.1) globally enables or disables the servicing of all
maskable interrupts. The EI instruction sets the bit, which enables interrupt servicing. The
DI instruction clears the bit, which disables interrupt servicing. The bits in INT_MASK and
INT_MASKI1 individually enable or disable the interrupts (see Table 5-5). Interrupts that
occur while interrupt servicing is globally disabled (PSW.1 cleared) are held in the interrupt
pending registers.

5-11

intal.

INTERRUPTS

Table 5-5. Standard Interrupt Sources, Vectors, and Register Bits

Interrupt Source Interrupt Vector(s) Number | Interrupt Source
Enabled by | Selected
Setting (1) by (2)
A/D Conversion Complete A/D Conversion Complete INTO1 INT_MASK.1 | —
A/D Conversion Start Software Timer INTO5 INT_MASK.S5 | —
HSI FIFO Fourth Entry HSI FIFO 4 INT10 INT_MASK1.2 | —
HSI FIFO Full HSI FIFO Full INT14 INT_MASK1.6 | —
HSI Data Available INTO2 INT_MASK.2 | IOC1.7 =1
HSI Holding Reg. Loaded HSI Data Available INTO2 INT_MASK.2 | IOC1.7 =0
HSI.0 HSIL.0 Pin INTO4 INT_MASK.4 | —
HSO0.0-HSO.5 High Speed Outputs INTO3 INT_MASK.3 | —
NMI NMI INT15 —|—
P0.7 EXTINT INTO7 INT_MASK.7 | IOC1.1 =1
P2.2 EXTINT INTO7 INT_MASK.7 | I0OC1.1=0
EXTINTA INT13 INT_MASK1.5 | —
RI Flag Receive INTO9 INT_MASK1.1| —
Serial Port INTO6 INT_MASK.6 | —
Software Timers 0-3 Software Timer INTO5 INT_MASK.5 | —
Tl Flag Transmit INTO8 INT_MASK1.0 | —
Serial Port INTO6 INT_MASK.6 | —
Timer 1 Overflow Timer Overflow INTOO INT_MASK.0 | IOC1.2=1
Timer 2 Capture Timer 2 Capture INT11 INT_MASK1.3 | —
Timer 2 Overflow Timer Overflow INTOO INT_MASK.0 | IOC1.3 =1
Timer 2 Overflow INT12 INT_MASK1.4 | —
Timer 2 Reset Software Timer INTO5 INT_MASK.5 | —

NOTES:

1.

This column lists, for each interrupt source, the mask bit that must be set to enable the interrupt. Five
interrupt sources can each generate two different interrupts — an 8096BH-compatible interrupt and a
new, separate interrupt (HSI FIFO Full, EXTINT1, Receive, Transmit, Timer 2 Overflow). In all cases,

only one interrupt should be enabled for each source. (That is, the mask bit should be set for only one of
the two possible interrupts).

Three of the 8096BH-compatible interrupts (HSI Data Available, EXTINT, and Timer Overflow) can be

generated by either of two sources. This column shows the IOC1 register bit and value that selects each

source.

5-12

intgl.

INTERRUPTS

5.5.4. Selecting Interrupt Sources

Five interrupt sources can each generate two different interrupts — an 8096BH-compatible
interrupt and a new, separate interrupt (HSI FIFO Full, EXTINT1, Receive, Transmit, Timer
2 Overflow). In all cases, only one interrupt should be enabled for each source. (That is, the
mask bit should be set for only one of the two possible interrupts). Figure 5-5 shows the
interrupt sources for each interrupt vector. Table 5-5 lists the IOC1 register bit and value

that selects each source.

Interrupt Source

NMI

Timer 2 Capture

HSI FIFO Fourth Entry
Rl Flag

Tl Flag
Unimplemented Opcode

TRAP Instruction

P0.7
P2.2

Software Timer 0-3 —

Timer 2 Reset

A/D Conversion Start ——

HSI1.0
HSO.0-HSO.5
HSI FIFO Full

HSI Holding Reg. Loaded —— V

A/D Conversion Complete

Timer 2 Overflow

Timer 1 Overflow —|' ,

10C1.1

Y\
1l

L‘lgﬂm 7

-

I0C1.3—

I0C1.2—

Interrupt Vector

NMI

Timer 2 Capture

HSI FIFO 4

Receive

Serial Port

Transmit
Unimplemented Opcode

Software Trap

EXTINT
EXTINT1

Software Timer

HSI.0 Pin
High Speed Outputs
FIFO Full

HSI Data Available
A/D Conversion Complete

Timer 2 Overflow

Timer Overflow

A0116-A0

Figure 5-5. Interrupt Sources

5-13

Inte|® INTERRUPTS

5.5.5. Interrupt Mask Registers

The interrupt mask registers, INT_MASK and INT_MASKI1, enable or disable (mask)
individual interrupts. With the exception of the Nonmaskable Interrupt (NMI) bit
(INT_MASK1.7), setting a bit enables the corresponding interrupt source; clearing a bit
disables the source. When the device is reset, the interrupt mask registers are cleared
(disabling interrupts).

For design symmetry with the INT_PENDI register, an NMI mask bit exists in the
INT_MASKI1 register. However, the mask bit has no function; NMI is enabled for both
NMI_MASK set and NMI_MASK cleared. To ensure compatibility with future products,
always write zero to the NMI mask bit.

When the device is reset, the interrupt mask registers are cleared (disabling interrupts).

5.5.6. Interrupt Pending Registers

When the Transition Detector detects an interrupt, it sets the corresponding bit in the
INT_PEND or INT_PENDI register. This bit is set even if the individual interrupt is
disabled (masked). The pending bit is cleared when the program vectors to the interrupt
service routine (standard interrupts) or PTSCB (PTS interrupts). INT_PEND and
INT_PENDI1 can be read, to determine which interrupts are pending. They can also be
modified (written), either to clear pending interrupts or to generate interrupts under software
control.

Care should be taken in writing code that modifies these registers. For example, an
instruction sequence that clears a pending bit could result in an interrupt being
acknowledged after the sequence begins but before the bit is actually cleared. In this case a
five-state-time partial interrupt cycle occurs. That is, the interrupt process begins, but never
jumps to the interrupt service routine. This time delay can be avoided by making the code
inseparable, in the sense that an interrupt will not be acknowledged while the code is
executing. The easiest way to do this is to use the logical instructions in the two- or three-
operand format, for example:

ANDB INT PEND, #01111111B ; Clears the EXTINT interrupt
ORB INT PEND, #10000000B ; Sets the EXTINT interrupt

The 8XC196KC/KD does not acknowledge interrupts during execution of these “read-
modify-write” instructions.

The PTSSRYV register holds requests for "end-of-PTS" interrupts. End-of-PTS interrupts
indicate that the PTS needs servicing. The end-of-PTS interrupt service routine should
reinitialize the PTSCB and set the appropriate PTSSEL bit to re-enable PTS interrupt
service. _

5-14

intgl.

INTERRUPTS

5.6. PTS CONTROL BLOCKS

Each PTS interrupt requires a block of data called the PTS Control Block (PTSCB). The
PTSCB determines the PTS mode, the number of PTS cycles, and the address of the source
and destination of data transfers. You must set up the PTSCB for each interrupt source
before enabling the PTS interrupts. Each PTSCB requires eight data bytes in register RAM.
The address of the first (lowest) byte is stored in the PTS Vector table in Special-Purpose
memory (see Chapter 4, “Memory Partitions”). Write the first byte into an address evenly
divisible by 8 (quad-word boundary). Figure 5-6 shows the PTSCB for each PTS mode.

Unused PTSCB bytes can be used as extra RAM.

Single Block A/D Scan HSO Mode HSI Mode
Transfer Transfer Mode
Unused Unused Unused Unused Unused
Unused PTSBLOCK Unused PTSBLOCK PTSBLOCK
PTSDST (HI) PTSDST (HI) PTSREG (HI) Unused Unused
PTSDST (LO) PTSDST (LO) PTSREG (LO) Unused Unused
PTSSRC (HI) PTSSRC (HI) PTS_S/D (Hl) PTSSRC (HI) PTSDST (HI)
PTSSRC (LO) PTSSRC (LO) PTS_S/D (LO) PTSSRC (LO) PTSDST (LO)
PTSCON PTSCON PTSCON PTSCON PTSCON
PTSCOUNT PTSCOUNT PTSCOUNT PTSCOUNT PTSCOUNT

Figure 5-6. PTS Control Blocks
5.6.1. PTSCOUNT Register

The first location of each PTSCB is always the PTSCOUNT register. PTSCOUNT defines
the number of PTS cycles to be executed consecutively without software intervention. Since
PTSCOUNT is an 8-bit value, the maximum number of cycles is 256. PTSCOUNT is
decremented at the end of each PTS cycle. When PTSCOUNT reaches zero, hardware clears
the corresponding PTSSEL bit and sets the PTSSRV bit, which requests the end-of-PTS
interrupt.

5.6.1.1. END-OF-PTS INTERRUPTS

An end-of-PTS interrupt is a standard interrupt. The Interrupt Controller processes it with an
interrupt service routine that is stored in the memory location pointed to by the standard
interrupt vector. For example, the PTS services the Transmit interrupt if PTSSEL.8 is set.
The interrupt vectors through 2050H, but the corresponding end-of-PTS interrupt vectors
through 2030H, the standard Transmit interrupt vector. When the end-of-PTS interrupt
vectors to the interrupt service routine, hardware clears the PTSSRV bit. The interrupt
service routine must set the PTSSEL bit to re-enable PTS service for the interrupt.

5-15

intgl.

INTERRUPTS

5.6.2. PTSCON Register

The second location of each PTSCB is always the PTSCON register. Three bits of the
PTSCON register determine the PTS mode: Single Transfer, Block Transfer, A/D Scan,
HSO, or HSI (see Table 5-6). The PTS mode defines the functions of the other bits; see
Table 5-8 for Single and Block Transfer modes and Table 5-8. PTSCON has one
configuration for the Single and Block Transfer modes (see Figure 5-7) and one for the A/D
Scan, HSO, and HSI modes (see Figure 5-8). See Appendix C for a detailed description of
the contents of PTSCON during each PTS mode. See Table A-11 in Appendix A for cycle
execution time for each PTS mode.

Table 5-6. PTS Mode Select

Bit 7 Bit 6 Bit 5 Selected Mode
0 0 0 Single Transfer
0 0 1 HSI Mode
0 1 0 N/A
0 1 1 HSO Mode
1 0 0 Block Transfer
1 0 1 N/A
1 1 0 A/D Scan
1 1 1 N/A

Table 5-7. PTSCON Bits 0—4 (Single and Block Transfer Modes)

Bit Bit Bit Name Description
Number | Mnemonic
0 0] PTSDST Setting this bit causes the PTS destination register to
Auto- increment at the end of each PTS cycle.
Increment
1 Sl PTSSRC Setting this bit causes the PTS source register to increment
Auto- at the end of each PTS cycle.
Increment
2 DU Update Setting this bit causes the PTSDST register to retain its final
PTSDST value at the end of a PTS cycle. Clearing it causes the
register revert to the value that existed at the beginning of
the PTS cycle.
3 SuU Update Setting this bit causes the PTSSRC register to retain its final
PTSSRC value at the end of a PTS cycle. Clearing it causes the
register to revert to the value that existed at the beginning of
the PTS cycle.
4 BW Byte/Word Setting this bit specifies a byte transfer. Clearing it specifies
Transfer a word transfer.

5-16

"Ttel@ INTERRUPTS

Table 5-8. PTSCON Bit 3 (A/D Scan, HSI, and HSO Modes)

Bit Bit Bit Name Description
Number Mnemonic
3 UPDT Update Setting this bit causes the associated register(s) to be
Register loaded with the value that exists at the end of a PTS

cycle. Clearing it causes the register(s) to be loaded with
the value that existed at the beginning of the PTS cycle.

Mode Register

A/D PTS_S/D
HSI PTSDST
HSO PTSSRC

7 6 5 4 3 2 1 0

DI

Sl

DU

SuU

BW
PTSMODE

A0036-A0

Figure 5-7. PTSCON (Single and Block Transfer Modes)

0
I __ UPDT
PTSMODE

A0037-A0

Figure 5-8. PTSCON (A/D Scan, HSI, and HSO Modes)

5-17

|nte|® INTERRUPTS

5.7. SINGLE TRANSFER MODE

In the Single Transfer mode, each PTS cycle transfers a single byte or word (selected by the
BW bit in PTSCON) from one memory location to another. This mode is typically used with
serial I/O port interrupts. The PTSCOUNT register specifies the number of transfers (each
transfer is one PTS cycle). The PTS moves the byte or word from the location pointed to by
the source register (PTSSRC) to the location pointed to by the destination register
(PTSDST).

PTSSRC and PTSDST may point to any memory location; however, they must point to an
even address if word transfers are selected. Setting the auto-increment and update bits
causes the PTS to increment the source (if SI and SU are set) and/or destination (if DI and
DU are set) address at the end of each PTS cycle. The address increments by one if byte
transfers are selected or by two if word transfers are selected. In Single Transfer mode, each
pair of auto-increment and update bits must both be either set or cleared. Programming the
increment and update bits to (0,1) or (1,0) selects an invalid mode. PTSSRC and PTSDST
can be incremented (and updated) independently of each other.

5.7.1. Single Transfer Mode Example

The following PTSCB defines nine PTS cycles (see Table 5-9). Each cycle moves a single.
word from location 20H to an external memory location. The PTS transfers the first word to
location 6000H. Then it increments and updates the destination address and decrements the
PTSCOUNT register; it does not increment the source address. When the second cycle
begins, the PTS moves a second word from location 20H to location 6002H. When
PTSCOUNT equals zero, the PTS will have filled locations 6000H—600FH, and an end-of-
PTS interrupt is generated.

Table 5-9. Single Transfer Mode PTSCB

Unused

Unused
PTSDST (HI) = 60H
PTSDST (LO) = 00H
PTSSRC (HI) = 00H
PTSSRC (LO) = 20H
PTSCON = 15H (DI, DU, & BW = 1)
PTSCOUNT = 09H

5-18

|nte|® INTERRUPTS

5.8. BLOCK TRANSFER MODE

In Block Transfer mode, the PTS moves a block of data from one memory location to
another. The PTSBLOCK register specifies the number of bytes or words in each block (n =
1-32). The PTS moves the block of bytes or words from the location pointed to by the
source register (PTSSRC) to the location pointed to by the destination register (PTSDST).

PTSSRC and PTSDST may point to any memory location; however, they must point to an
even address if word transfers are selected. Setting the auto-increment bits in the PTSCON
register, causes the PTS to increment the source (SI set) and/or destination (DI set) address
at the end of each PTS transfer. If the update bit is also set, the incremented address is saved
in the PTSSRC (SU set) or PTSDST (DU set) register after each PTS cycle. Setting both the
increment and update bits means that the source and/or destination address will be
incremented after each cycle. The registers increment by one if byte transfers are selected or
by two if word transfers are selected. The increment and update features may be selected
independently (unlike in Single Transfer Mode).

In this mode, it is important to differentiate between a PTS transfer and a PTS cycle. A PTS
transfer is the movement of a single byte or word from the source to the destination. A PTS
cycle consists of the transfer of an entire block of bytes or words. Because a PTS cycle is
uninterruptable, the Block Transfer mode can create long interrupt latency. The worst-case
latency could be as high as 500 states. This worst-case latency assumes a block transfer of
32 words from one external memory location to another using an 8-bit bus with no wait
states. See Table A-11 in Appendix A for PTS cycle execution times.

5.8.1. Block Transfer Mode Example

The PTSCB in Table 5-10 defines three PTS cycles that will each transfer the bytes in
memory locations 20H-24H to one of the following blocks: 6000H-6004H, 6005H-6009H,
or 600AH-600EH. Each PTS cycle requires a burst of five transfers. The source and
destination are incremented after each transfer, but only the destination is updated after each
cycle. The first byte of each cycle is always read from location 20H.

Table 5-10. Block Transfer Mode PTSCB

Unused

PTSBLOCK = 05H
PTSDST (HI) = 60H
PTSDST (LO) = 00H
PTSSRC (Hi) = 00H
PTSSRC (LO) = 20H

PTSCON = 97H (DI, SI, DU, BW = 1)

PTSCOUNT = 03H

5-19

|nte|® | INTERRUPTS

5.9. A/D SCAN MODE

In the A/D Scan mode, the PTS causes the A/D converter to perform multiple conversions
on one or more channels and then stores the results. To use the A/D Scan mode, you must
first set up a command/data table in memory (see Table 5-11). The command/data table
contains A/D commands that are interleaved with blank memory locations. The PTS stores
the conversion results in these blank locations.

To initiate A/D Scan mode, enable the A/D Conversion Complete interrupt and assign it to
the PTS, then have software start the first conversion. When the A/D finishes the first
conversion and generates an A/D Conversion Complete interrupt, the PTS cycle is initiated.

During each PTS cycle, the PTS stores the results from the previous conversion and then
executes the next conversion command. Since the conversion results are not stored until the
next PTS cycle, the last command location should contain all zeros to prevent a final
conversion from starting. Typically, the A/D commands are loaded into the table from an
external ROM. Only the amount of available memory limits the table size; it can reside in
internal or external RAM.

Table 5-11. A/D Scan Mode Command/Data Table

XXX + 0AH A/D Result 2
XXX + 8H Unused A/D Command 3

XXX + 6H A/D Result 1
XXX + 4H Unused A/D Command 2

XXX + 2H A/D Result 0*
XXX Unused A/D Command 1

*Result of the A/D conversion that initiates the PTS cycle.

In A/D Scan mode, the PTSCOUNT specifies the total number of A/D conversion cycles.
The PTS_S/D register points to the table of conversion commands and results. Setting the
UPDT bit in the PTSCON register (PTSCON.3) causes the PTS_S/D register to retain its
final value at the end of the PTS cycle. Clearing it causes the register to revert to the value
that existed at the beginning of the PTS cycle. PTS_REG points to address 02H in
HWindow 0. When read, this location contains the AD_RESULT register; when written, it
contains the AD_COMMAND register. The A/D Scan mode also uses two temporary
registers that are inaccessible to the user.

5-20

nte|® INTERRUPTS

5.9.1. PTS Cycles in A/D Scan Mode

Software must start the first A/D conversion. The A/D Conversion Complete interrupt
initiates the PTS cycle. The following actions occur after the PTS cycle begins:

1.

The PTS reads the first command, stores it in a temporary location, and then increments
the PTS_S/D register twice. PTS_S/D now points to the first blank location in the
command/data table (address xxx + 2).

The PTS reads the AD_RESULT register, stores the results of the first conversion into
location xxx + 2 in the command/data table, and increments the PTS_S/D register
twice. PTS_S/D now points to xxx + 4.

The PTS loads the command from the temporary location into the AD_COMMAND
register. This starts the next A/D conversion cycle.

If UPDT (PTSCON.3) is clear, the PTS_S/D register is reinitialized to its original value.
The next cycle will use the same command and overwrite previous data. If UPDT is set,
the PTS saves the new contents of PTS_S/D and it points to the next command.

PTSCOUNT is decremented and the CPU returns to regular program execution. When
PTSCOUNT reaches zero, hardware clears the corresponding PTSSEL bit and sets the
PTSSRYV bit, which requests the end-of-PTS interrupt.

When the conversion started by the PTS cycle completes and the A/D generates the A/D
Conversion Complete interrupt, a new PTS cycle begins. Steps 1-5 repeat.

Because the lower six bits of the AD_RESULT register contain status information, the end-
of-PTS interrupt service routine could shift the results data to the right six times to leave
only the conversion results in the memory locations.

5-21

"ﬂ'el@ INTERRUPTS

5.9.2. A/D Scan Myde Example 1

The command/data. tapyle shown in Table 5-12 sets up a series of A/D conversions,
beginning with charmgl 7 and ending with channel 0. Each table entry is a word (two bytes).
Table 5-13 shows the ¢ryrresponding PTSCB.

Software starts a convgrsion on Channel 7. Upon completion of the conversion, the A/D
Conversion Complete jmterrupt initiates the first PTS cycle. Step 1 stores the Channel 6
command in a tempoxgry location and increments PTS_S/D to 102H. Step 2 stores the result
of the Channel 7 convgrsion in location 102H and increments PTS_S/D to 104H. Step 3
loads the Channel & weommand from the temporary location into the AD_COMMAND
register to start the mexy conversion. Step 4 updates PTS_S/D (PTS_S/D points to 104H) and
step 5 decrements PTWCOUNT to 7. The next cycle begins by storing the Channel 5
command in the tempuyary location. During the eighth cycle (PTSCOUNT = 1) the dummy
command is loaded intp the AD_COMMAND register and no conversion is performed.
PTSCOUNT is decremgnted to zero and the end-of-PTS interrupt is requested.

Tiable 5-12. Command/Data Table (Example 1)

Address Contents
11EH AD_RESULT for ACHO
T 11cH 0000H (Dummy command)
11AH AD_RESULT for ACH1
118H AD_COMMAND for ACHO
116H AD_RESULT for ACH2
114H AD_COMMAND for ACH1
112H AD_RESULT for ACH3
110H AD_COMMAND for ACH2
10EH AD_RESULT for ACH4
10CH AD_COMMAND for ACH3
10AH AD_RESULT for ACHS
108H AD_COMMAND for ACH4
106H AD_RESULT for ACH6
104H AD_COMMAND for ACH5
102H AD_RESULT for ACH7
100H AD_COMMAND for ACH6

|nte|® INTERRUPTS

Table 5-13. A/D Scan Mode PTSCB (Example 1)

Unused

Unused
PTS_REG (HI) = 00H
PTS_REG (LO) = 02H

PTS_S/D (Hl) = 01H
PTS_S/D (LO) = 00H
PTSCON = CAH (UPDT = 1)
PTSCOUNT = 08H

5.9.3. A/D Scan Mode Example 2

Table 5-14 sets up a series of ten PTS cycles that each read a single A/D channel and store
the result in a single location (102H). UPDT is cleared so that original contents of PTS_S/D
are restored after the cycle. The command/data table is shown in Table 5-15.

Table 5-14. A/D Scan Mode PTSCB (Example 2)

Unused

Unused
PTS_REG (HI) = 00H
PTS_REG (LO) = 02H

PTS_S/D (HI) =01H
PTS_S/D (LO) = 00H
PTSCON = C2H (UPDT = 0)
PTSCOUNT = 0AH

Table 5-15. Command/DataTable (Example 2)

Address Contents
102H AD_RESULT for ACHx
100H AD_COMMAND for ACHx

Software starts a conversion on Channel x. The first PTS cycle begins when the conversion
is finished and the A/D Conversion Complete interrupt is generated. The PTS stores the
conversion results in location 102H and then copies the conversion command from location
100H to the AD_COMMAND register. The CPU can process or move the conversion results
data from the table before the next conversion completes and a new PTS cycle begins.
When the next cycle begins, PTS_S/D again points to 100H. The conversion results are
written to location 102H and the command at location 100H is re-executed.

5-23

|nte|® INTERRUPTS

5.10. HSI MODE

In HSI mode, the PTS dumps the contents of HSI FIFO to a table in either internal or
external memory. The PTSDST register contains the address of the table.

Any HSI interrupt can be used to trigger the PTS cycle. The PTSBLOCK register specifies
how many HSI FIFO blocks (» = 1-7) will be transferred to the memory table during each
PTS cycle. Enter a value that corresponds with the interrupt that generates the PTS cycle.
For example, the fourth FIFO entry can cause the HSI to generate the HSI FIFO 4 interrupt
(INT10). If this interrupt was used to initiate the PTS cycle, then you would write 4 into the
PTSBLOCK register so that the four FIFO entries would be dumped to the table.

FIFO data is accessed by reading the HSI_STATUS register first and then reading the
HSI_TIME register. The HSI_STATUS register contains the event status bits and the current
HSI pin states. The HSI_TIME register contains the time, with respect to the Timer 1 count
value, at which the HSI event was triggered. See Chapter 8, “High-Speed Input/Output
Unit,” for a detailed description of the HSI module and Appendix C, “8XC196KC/KD
Registers,” for a detailed description of the HSI registers.

Each PTS transfer moves the HSI_STATUS and HSI_TIME registers into consecutive
words in memory (see Table 5-16). Setting the UPDT bit (PTSCON.3) causes the PTSDST
register to retain its final value at the end of the PTS cycle.

Table 5-16. HSI Mode PTS Table

XXX + 0AH HSI_TIME_2
XXX + 8H OFFH HSI_STATUS_2

XXX + 6H HSI_TIME_1
XXX + 4H OFFH HSI_STATUS _1

XXX +2H HSI_TIME_0O
XXX OFFH HSI_STATUS_0

5-24

|nte|® INTERRUPTS

5.10.1. HSI Mode Example

The PTSCB in Table 5-17 defines ten PTS cycles that will each transfer seven blocks of
HSI_STATUS/HSI_TIME data from the HSI FIFO to a table starting at memory location
100H. The destination address is incremented after each transfer and updated with the new
value after each cycle.

Table 5-17. HSI Mode PTSCB

Unused
PTSBLOCK = 07H

Unused

Unused
PTSDST (HI) = 01H
PTSDST (LO) = 00H
PTSCON = 2AH (UPDT = 1)
PTSCOUNT = 0AH

5.11. HSO MODE

In HSO mode, the PTS loads the HSO CAM file from a table located in either internal or
external memory (see Table 5-18). The HSO mode is similar to the HSI mode, except that
the PTS moves the data from the table to the HSO CAM file instead of vice versa. The
PTSSRC register contains the address of the table.

Table 5-18. HSO Mode PTS Table

XXX + 0AH HSO_TIME_2
XXX + 8H Unused HSO_COMMAND_2

XXX + 6H HSO_TIME_1
XXX + 4H Unused HSO_COMMAND_1

XXX + 2H HSO_TIME_O
XXX Unused HSO_COMMAND_0

Each CAM register is 24 bits wide. Sixteen bits identify when, with respect to Timer 1 or
Timer 2, the action should occur. The remaining 8 bits define the action. Load this
information into the memory table in the format shown in Table 5-18. Each PTS cycle
transfers data to the HSO_COMMAND and HSO_TIME registers. The data is transferred
from the registers into the HSO holding register. The command is held in the holding
register until there is an empty CAM register, at which time the command enters the CAM.
See Chapter 8, "High-Speed Input/Output Unit" for more information about the CAM file.

5-25

|nte|® INTERRUPTS

Any HSO interrupt can be used to trigger the PTS cycle. The PTSBLOCK register specifies
how many HSO entries (n = 1-8) will be transferred from the memory table during each
PTS cycle. Setting the UPDT bit (PTSCON.3) causes the PTSSRC register to retain its final
value at the end of the PTS cycle. See Chapter 8, “High-Speed Input/Output Unit,” for a
detailed description of the HSO module and Appendix C, “8XC196KC/KD Registers,” for
information about the HSO registers.

5.11.1. HSO Mode Example

The PTSCB in Table 5-19 defines ten PTS cycles that will each transfer eight blocks of
HSO_COMMAND/HSO_TIME data to the HSO from the table starting at memory location
100H. The source address is incremented after each transfer and updated with the new value
after each cycle.

Table 5-19. HSO Mode PTSCB

Unused
PTSBLOCK = 08H

Unused

Unused
PTSSRC (HIly = 01H
PTSSRC (LO) = 00H
PTSCON = 6AH (UPDT = 1)
PTSCOUNT = 0AH

5-26

