Data Types and
Addresses

CHAPTER 3
DATA TYPES AND ADDRESSES

This chapter defines the operand types and addressing modes supported by the MCS-96
architecture.

Chapter 2, “Introduction to the 8XC196KC/KD,” provides an overview of the MCS-96
instruction set. It discusses differences between the 8XC196KC/KD instruction set and that
of the 8096BH and offers guidelines for program development. Appendix A provides
reference information for the 8XC196KC/KD instruction set. It includes descriptions of the
instructions, hexadecimal opcodes, instruction lengths, execution times, and the
relationships between Program Status Word (PSW) flags and the instructions. Appendix C
provides a detailed description of the PSW.

3.1. OPERAND TYPES

The MCS-96 architecture supports a variety of data types likely to be useful in a control
application. Where appropriate, this discussion uses the names adopted by the PLM-96
programming language. The name of an operand type is shown in all capitals, to avoid
confusion. For example, a BYTE is an unsigned eight-bit variable, while a byte is an eight-
bit unit of data of any type.

The following data types are available on the 8XC196KC/KD:

e BIT

e BYTE

e SHORT-INTEGER
e WORD

e INTEGER

e DOUBLE-WORD
e LONG-INTEGER

Table 3-1 provides an overview of these operand types. The remainder of this section
discusses each one in detail.

intgl.

DATA TYPES AND ADDRESSES

Table 3-1. Operand Type Definitions

Operand Type No. of | Signed Possible Values Addressing
Bits Restrictions
BIT 1 No True or False As components of bytes
BYTE 8 No 0 through 255 None
SHORT-INTEGER 8 Yes: —128 through +127 None
WORD 16 No 0 through 65535 Even byte address
INTEGER 16 Yes —32,768 through +32,767 | Even byte address
DOUBLE-WORD * 32 No 0 through 4,294,967,295 Even byte address in on-
chip Register File; evenly
divisible by four **
LONG-INTEGER * 32 Yes —2,147,483,648 through Even byte address in on-
+2,147,483,647 chip Register File; evenly
divisible by four **

* The 32-bit operands are supported only as the operand in shift operations, as the dividend in 32-by-16
divide operations, and as the product of 16-by-16 multiply operations.

** For consistency with Intel-provided software, you should adopt the PLM-96 conventions for addressing 32-
bit operands. For more information, refer to “Software Standards and Conventions” in Chapter 2.

3.1.1. BIT Operand

A BIT is a single-bit operand that can take on the Boolean values, “true” and “false.” In
addition to the normal support for bits as components of BYTE and WORD operands, the
8XC196KC/KD provides a means for directly testing any bit in the internal Register File.
The MCS-96 architecture requires that bits be addressed as components of BYTEs or
WORD:s. It does not support the direct addressing of bits that can occur in the MCS-51
architecture.

3.1.2. BYTE Operand

A BYTE is an unsigned, 8-bit variable that can take on values from O through 255.
Arithmetic and relational operators can be applied to BYTE operands, but the result must be
interpreted in modulo 256 arithmetic. Logical operations on BYTES are applied bitwise.
Bits within BYTEs are labeled from O to 7; bit O is the least-significant bit. There are no
alignment restrictions for BYTEs, so they may be placed anywhere in the MCS-96 address
space.

3.1.3. SHORT-INTEGER Operand

A SHORT-INTEGER is an 8-bit, signed variable that can take on values from —128 through
+127. Arithmetic operations that generate results outside the range of a SHORT-INTEGER
set the overflow flags in the PSW. The numeric result is the same as the result of the
equivalent operation on BYTE variables. There are no alignment restrictions on SHORT-
INTEGERs, so they may be placed anywhere in the MCS-96 address space.

3-2

|nte|® DATA TYPES AND ADDRESSES

3.1.4. WORD Operand

A WORD is an unsigned, 16-bit variable that can take on values from O through 65535.
Arithmetic and relational operators can be applied to WORD operands, but the result must
be interpreted in modulo 65536 arithmetic. Logical operations on WORDs are applied
bitwise. Bits within WORD:s are labeled from 0 to 15; bit O is the least-significant bit.

WORDs must be aligned at even byte boundaries in the MCS-96 address space. The least-
significant byte of the WORD is in the even byte address, and the most-significant byte is in
the next higher (odd) address. The address of a WORD is that of its least-significant byte
(the even byte address). WORD operations to odd addresses are not guaranteed to operate in
a consistent manner.

3.1.5. INTEGER Operand

An INTEGER is a 16-bit, signed variable that can take on values from -32,768 through
+32,767. Arithmetic operations that generate results outside the range of an INTEGER set
the overflow flags in the PSW. The numeric result is the same as the result of the equivalent
operation on WORD variables.

INTEGERs must be aligned at even byte boundaries in the MCS-96 address space. The
least-significant byte of the INTEGER is in the even byte address, and the most-significant
byte is in the next higher (odd) address. The address of an INTEGER is that of its least-
significant byte (the even byte address). INTEGER operations to odd addresses are not
guaranteed to operate in a consistent manner. '

3.1.6. DOUBLE-WORD Operand

A DOUBLE-WORD is an unsigned, 32-bit variable that can take on values from O through
4,294,967,295. The MCS-96 architecture directly supports DOUBLE-WORD operands only
as the operand in shift operations, as the dividend in 32-by-16 divide operations, and as the
product of 16-by-16 multiply operations. For these operations, a DOUBLE-WORD variable
must reside in the on-chip Register File and must be aligned at an address that is evenly
divisible by four. The address of a DOUBLE-WORD is that of its least-significant byte (the
even byte address). The least-significant word of the DOUBLE-WORD is always in the
lower address, even when the data is in the stack. This means that the most-significant word
must be pushed into the stack first.

DOUBLE-WORD operations that are not directly supported can be easily implemented with
. two WORD operations.

For consistency with Intel-provided software, you should adopt the PLM-96 conventions for
addressing DOUBLE-WORD operands. (The PLM-96 conventions are discussed in
“Software Standards and Conventions” in Chapter 2.)

3-3

|nte'@ | DATA TYPES AND ADDRESSES

3.1.7. LONG-INTEGER Operand

A LONG-INTEGER is a 32-bit, signed variable that can take on values from
-2,147,483,648 through +2,147,483,647. The MCS-96 architecture directly supports
DOUBLE-WORD operands only as the operand in shift operations, as the dividend in 32-
by-16 divide operations, and as the product of 16-by-16 multiply operations. For these
operations, a LONG-INTEGER variable must reside in the on-chip Register File and must
be aligned at an address that is evenly divisible by four. The address of a LONG-INTEGER
is that of its least-significant byte (the even byte address).

LONG-INTEGER operations that are not directly supported can be easily implemented with
two INTEGER operations.

For consistency with Intel-provided software, you should adopt the PLM-96 conventions for
addressing LONG-INTEGER operands. (The PLM-96 conventions are discussed in
“Software Standards and Conventions” in Chapter 2.)

3.2. ADDRESSING MODES

Six basic addressing modes are used to access operands within the address space of the
80C196KC/KD:

e Register-Direct

e Indirect

e Indirect with Auto-Increment

e Immediate

e Short-Indexed

¢ Long-Indexed

Two other useful modes are Zero Register addressing and Stack Pointer Register addressing.
Zero Register addressing combines the ZERO_REG with Long-Indexed addressing,
allowing direct access to any location in memory. Stack Pointer Register addressing
combines the SP with Indirect addressing to access the top of the stack and with Short-
Indexed addressing to access data within the stack.

This section describes the addressing modes as they are handled by the hardware. An
understanding of these details will help programmers to take full advantage of the
architecture. The assembly language hides some of the details of how these addressing
modes work. The “Assembly Language Addressing Mode Selections” section (see page 3-8)
describes how the assembly language handles direct and indexed addressing modes.

3-4

|nte|® DATA TYPES AND ADDRESSES

3.2.1. Register-Direct Addressing

The Register-Direct addressing mode directly accesses a register from the 256-byte on-chip
lower Register File. With windowing, this mode can also directly access the additional SFRs
or the upper Register File (see Chapter 4, “Memory Partitions”). The register is selected by
an 8-bit field within the instruction, and the register address must conform to the alignment
rules for the operand type. Depending on the instruction, up to three registers can take part
in the calculation.

Examples of Register-Direct Addressing:

ADD AX,BX,CX ; AX <-- BX + CX (ADD_3op)
MUL AX,BX ; AX <-- AX * BX (MUL_2op)
INCB CL ; CL<-—- CL +1

Definition of Temporary Registers:
AX, BX, and CX are 16-bit registers. CL is the low byte of CX.

3.2.2. Indirect Addressing

The Indirect addressing mode accesses an operand by placing its address in a WORD
variable in the Register File. The calculated address must conform to the alignment rules for
the operand type. Note that the indirect address can refer to an operand anywhere within the
MCS-96 address space, including the Register File. An 8-bit field within the instruction
selects the register that contains the indirect address. An instruction can contain only one
indirect reference; any additional operands must be Register-Direct references.

Examples of Indirect Addressing:

LD AX, [AX] ; AX <-- MEM WORD (AX)
ADDB AL,BL, [CX] ; AL <-- BL + MEM BYTE(CX) (ADDB_3op)
POP [AX] ; MEM WORD (AX) <-- MEM WORD (SP)

; SP <—— SP + 2

Definition of Temporary Registers:

AX, CX are 16-bit registers. AL is the low byte of AX. CL is the low byte of CX.

3.2.3. Indirect with Auto-Increment Addressing

Indirect with Auto-Increment addressing mode is the same as the Indirect mode, except that
the WORD variable that contains the indirect address is incremented after it is used to

address the operand. The least-significant bit of a WORD register distinguishes between
indirect addressing with or without auto-increment. If the instruction operates on a BYTE or

3-5

|nte|® DATA TYPES AND ADDRESSES

SHORT-INTEGER, the indirect address variable is incremented by one. If the instruction
operates on a WORD or INTEGER, the indirect address variable is incremented by two.

Examples of Indirect with Auto-Increment Addressing:

LD AX, [BX]+ ; AX <-- MEM WORD (BX)
. ; BX <-- BX + 2
ADDB AL, BL, [CX]+ ; AL <-- BL + MEM BYTE (CX)
; CX <-- CX + 1 (ADDB_3op)
PUSH [AX]+ ; SP <-- SP - 2
; MEM WORD (SP) <-- MEM WORD (AX)
; AX <-- AX + 2

Definition of Temporary Registers:

AX, BX, CX are 16-bit registers. AL is the low byte of AX. BL is the low byte of BX.

3.2.4. Inmediate Addressing

Immediate addressing mode allows an operand to be taken directly from a field in the
instruction. For operations on BYTE or SHORT-INTEGER operands, this is an 8-bit field.
For operations on WORD or INTEGER operands, it is a 16-bit field. An instruction can
contain only one Immediate reference; any additional operands must be Register-Direct
references.

Examples of Immediate Addressing:

ADD AX, #340 ; AX <-- AX + 340 (ADD_20p)
PUSH #1234H ; SP <-- SP - 2

; MEM_WORD (SP) <-- 1234H
DIVB AX, #10 ; AL <-- AX/10

; AH <-- AX MOD 10

Definition of Temporary Registers:
AX is a 16-bit register. AL is the low byte and AH is the high byte of AX.

3.2.5. Short-Indexed Addressing

In Short-Indexed addressing mode, the address of one of the operands is calculated from two
8-bit fields. One 8-bit field in the instruction selects a WORD variable in the Register File,
which contains an address. The second 8-bit field in the instruction stream is sign-extended
and summed with the WORD variable to form the effective address of the operand. The
effective address can be up to 128 bytes before the address in the WORD variable and up to
127 bytes after it. An instruction can contain only one Short-Indexed reference; any
remaining operands must be Register-Direct references.

3-6

|nte|® DATA TYPES AND ADDRESSES

Examples of Short-Indexed Addressing:
LD AX,12[BX] ; AX <-— MEM WORD (BX+12)
MULB AX,BL,3[CX] ; AX <-- BL * MEM BYTE (CX+3)
; (MULB_3op)
Definition of Temporary Registers:
AX, BX, CX are 16-bit registers. BL is the low byte of BX.
3.2.6. Long-indexed Addressing

The Long-Indexed addressing mode is like the Short-Indexed mode, except that a 16-bit
field is taken from the instruction and added to the WORD variable to form the address of
the operand. No sign extension is necessary. An instruction can contain only one Long-
Indexed reference; any remaining operands must be Register-Direct references.

Examples of Long-Indexed Addressing:

AND AX,BX, TABLE [CX] ; AX <-- BX AND MEM WORD (TABLE+CX)
; (AND_3op)

ST AX, TABLE [BX] ; MEM_WORD (TABLE+BX) <-- AX

ADDB AL, BL, LOOKUP [CX] ; AL <-- BL + MEM BYTE (LOOKUP+CX)
; (ADDB_3op)

Definition of Temporary Registers:
AX, BX, CX are 16-bit registers. AL is the low byte of AX. BL is the low byte of BX.

3.2.7. Zero Register Addressing

The first two bytes in the Register File constitute the Zero Register (ZERO_REG). These
bytes are fixed at zero by the 80C196KC/KD hardware. In addition to providing a fixed
source of the constant zero for calculations and comparisons, the Zero Register can be used
as the WORD variable in a Long-Indexed reference. This combination of register selection
and addressing mode allows any location in memory to be addressed directly. Since this
mode uses indexed addressing, accesses are slower than register-direct accesses.

Examples of Zero Register Addressing:
ADD AX,1234[ZER0_REG] ; AX <-- AX + MEM WORD (1234) (ADD_ 20p)

POP 5678 [ZERO_REG] ; MEM_WORD (5678) <-- MEM WORD (SP)
; SP <-- SP + 2

Definition of Temporary Registers:

AX is a 16-bit register.

3-7

|nte|® DATA TYPES AND ADDRESSES

3.2.8. Stack Pointer Register Addressing

Bytes 18H and 19H of the lower Register File contain the system Stack Pointer (SP), which
is addressed at 18H. Besides providing for convenient manipulation of the Stack Pointer, SP
can also be used as the WORD variable in an Indirect reference to access the top of the
stack or in a Short-Indexed reference to access data within the stack.

Examples of Stack Pointer Register Addressing:

PUSH [SP] ; Duplicate TOP_OF_STACK
LD AX,2[SP] ; AX <-- NEXT TO_TOP

Definition of Temporary Registers:
AX is a 16-bit register.

3.3. ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONS

The MCS-96 assembly language simplifies the choice of addressing modes. These features
simplify the programming task and should be used wherever possible.

3.3.1. Direct Addressing

The assembly language chooses between Register-Direct and Zero Register addressing
depending on the memory location of the operand. The programmer can simply refer to the
operand by its symbolic name. If the operand is in the lower Register File, the assembly
language chooses a Register-Direct reference. If the operand is elsewhere in memory, it
chooses a Long-Indexed reference.

3.3.2. Indexed Addressing

The assembly language chooses between Short-Indexed and Long-Indexed addressing
depending on the value of the index expression. If the value can be expressed in eight bits,
the assembly language chooses a Short-Indexed reference. If the value is greater than eight
bits, it chooses a Long-Indexed reference.

3-8

