Solar Electron and Proton Telescope (SEPT)

Sensor Status

Reinhold Mueller-Mellin, University of Kiel

IMPACT team meeting Space Sciences Laboratory, Berkeley, CA December 14, 2001

SEPT Sensor Status

- Conceptual design ready.
 - Details of housing and cover release ready
 - Details of detector mount ready, detector masks frozen
 - Magnetic field calculations ready
- Change of S/C layout accomodated
 - SEPT-E and -NS both separated from SEP
 - Harness length established
- Funding secured
 - Funding agency informed about 1-year launch delay
 - Not yet covered: extra expenditures resulting from configuration change (environmental tests)

SEPT Sensor Status (continued)

- Project engineer hired
 - Supports mechanical design, detector tests, magnet tests. Started 2-JUL-2001. Name: Jörg Falenski
- Technical Assistance Agreement (TAA) revised
 - Not yet signed because signature copy not yet received
 - Signature copy expected by end of 2001
- First magnet system delivered
 - Passed visual incoming inspection
- Workshop started machining first parts for ETU housing

Major Accomplishments

- SEPT mechanical redesign to reflect:
 - New board size causing E-box outer dimensions to shrink
 - Rotation by 90° of E-box w.r.t. sensor
 - Addition of sensor thermistor with coax cable to E-box
 - New location for 12 detector connections at front/rear wall instead of top wall of E-box
 - Addition of grounding stud
 - New mount for thermal insulation
 - Cover release mechanism (was not included in sufficient detail before)
 - New pinpuller (Model P5-403-10S replaces P5-403-10)
- Triax cable ordered and delivered, coax connector identified (SSMC)
- Mask design for PIPS detectors frozen, two detectors fabricated
- Analytical calculation of magnetic far field with magnet mismatch

SEPT Resources

Subsystem	Mass [kg]		Power [W]		Bps
	IMPACT	Current	IMPACT	Current	Phase A
	Resources.		Resources.		Current
	pdf		pdf		
SEPT-E	0.520	0.556	0.500	0.500	30
SEPT-NS	0.520	0.556	0.500	0.500	30
SEPT-NS	0.27	0.27			
Bracket					
SEPT-NS	0.242	0.224	S/C A: 2.13 m (25 wires, 1 coax)		
Harness	0.372	0.342	S/C B: 3.48 m		
SEPT-E	0.128	0.120	S/C A: 0.94 m		
Harness	0.272	0.251	S/C B: 2.44 m		

SEPT Sensor - Upcoming Tasks

- Order pinpuller from TiNi Aerospace/California
- Contract out multi-node thermal analysis
 - Needs SEP thermal concept definition
- Contract out finite element structural analysis
 - Needs STEREO Environment Definition (released 11-May-01)
 - Needs GSFC bracket design
- Order Parylene film
- Verify compatibility of detector signal characteristics and analogue electronics design

SEPT Sensor Concerns

- PDR RFA # 29: Stray light problem
 - Ohmic side face open space
 - Verification open
 - Possible solution: perform solar simulation test
- PDR RFA # 13: Magnetic cleanliness
 - Far field analysis completed, including magnet mismatch
 - Solution:
 - Perform magnetic measurement with Mario's test equipment
 - Select magnets for matched magnet system

SEPT Sensor Concerns (continued)

- Rare Earth NdFeB may be magnetic unstable due to drifts with temperature or handling. Cerium Cobalt is preferred by Mario. Impact of change to new magnetic material may be severe:
 - Weight increase: Lower remanence requires larger magnets
 - Cost increase: All magnets are already ordered
 - Schedule delay: new geometry requires new telescope design
- Thermal analysis predicts unacceptable wide temperature range. Op-heaters and non-op heaters are required. No provision is made to install them **inside** of E-box!