IMPACT Team Meeting

14 December, 2001

SIT NEWS & REPORT

UMd, GSFC, MPAe, UCB

SIT OVERVIEW

- TOF vs Total E
- He-Fe
- 30keV/Nuc 2 MeV/Nuc
- Resolve He³ from He⁴, C from O
- Single Telescope pointing near Parker spiral
 - 0.4 cm²ster
 - 17 x 44 degree FOV
- SSD, MCPs, thin foils, HV bias supply
- Non-reclosable acoustic cover
- Heritage
 - Telescope, analog TOF electronics designs were flown on WIND/STEP
 - Energy electronics ASIC is descendant of design flown on ACE/ULEIS
 - HVPS design flown by UCB
 - Digital TOF and logic electronics designs are new

SIT ASSEMBLY

Suprathermal Ion Telescope (SIT)

Side View

SIT Board Level Block Diagram

SIT STATUS

- Telescope
 - telescope mounting resolved
 - SIT mechanical concept and ICD drawing
 - ceramic parts ordered and received
 - some other parts ready for order
 - design work required on sunshade/door and on details of telescope mounting so the telescope sides can be finalized and ordered.
 - Sensor elements (SSDs, MCPs, foils) will be ordered in January or as soon as the contract between UMd and UCB is finalized.

- TOF Analog
 - prototype analog electronics tested at UMd with the prototype telescope and alpha source. Acceptable performance was observed and a potential improvement was identified.
 - Work on analog electronics has continued at MPAe, including a test with the prototype digital electronics and a thermal vacuum test.
 - tested prototype analog electronics shipped to UMd for test with the digital electronics and telescope.

- TOF Digital
 - prototype digital TOF electronics tested with analog electronics at MPAe
 - digital electronics delivered to UMd with updated documentation.
 - TOF test GSE at UMd has been modified to accommodate the updated documentation
 - the digital electronics is in test on the bench and soon with prototype telescope
 - next the analog electronics will be added and the entire TOF system will be tested in December

- Energy Electronics
 - several versions of the data package for the Caltech
 PHA chip have been received. Design assistance from
 Caltech is still needed on interconnecting the Amptek
 CSA with the PHA chip. Rick Cook has promised this
 after the chips are in production.
- Logic
 - a preliminary front end logic requirements specification has been prepared and delivered to GSFC.
 - Work has begun on defining SW requirements

- HVPS
 - work has begun with Peter Berg and David Curtis at UCB and Sandy Shuman at GSFC on resolving the issue of interconnecting the HVPS and the telescope.

SCHEDULE STATUS

ITEM	Behind	ОК	Comment
Telescope		X	
Structure		Х	
TOF	X		UMd is 2 weeks behind in testing
Energy	X	X	energy design waiting for VLSI release and
			Rick Cook availability
Logic		X	
HVPS		X	
Testing		NA	hasn't begun yet

SIT Resources

	Current	June Meeting	Delta
MASS (g)	1215	1215	0
POWER (mW)	1346	1382	-36

Mass includes 200g of "SIT enclosure & hardware" from Tycho's 4/19/01 breakdown, presented at the Peer Review

SIT Issues

- UMd Contract Status
 - still in bridge phase
 - will need money early 2002 for SSDs/MCPs to meet schedule
- Manpower Tight
 - need to spend more time in lab, less in office
- Energy/Logic Board
 - no prototype board design must work "first" time
 - continued close coordination between UMd and GSFC needed to stay on schedule
 - concern about when PHA chips and documentation available

Alternative Energy Schemes

- Concern about availability of PHA chips and design documentation
 - SIT energy design completely controlled by Caltech schedule
 - no manpower at UMd to use to recover from a late delivery
- Explore alternative energy schemes for SIT
 - single detector design means alternatives not completely infeasible
 - design can proceed in parallel with Caltech effort
- Project support needed if we choose an alternative
 - mass, power and cost impact

SIT ENERGY SYSTEM BLOCK DIAGRAM

Caltech VLSI

Alternate SIT ENERGY SYSTEM - ACE Chips

Alternate SIT ENERGY SYSTEM - Amptek Hybrids

Pros and Cons

Caltech PHA Chip	ACE Chip	Amptek Hybrids
Baseline design but Uncertain Schedule	Existing chip design Parts available?	Off the shelf parts Use amplifier designs from earlier projects
Most complicated I/F but same as rest of SEP	Interface complicated but a known quantity	Simple interface
Lowest mass Lowest power	Many voltages required Some mass penalty	Some mass and power penalty
Least effort for UMd and GSFC	Some design work at UMd, some at GSFC Need help from Caltech?	Some design work at UMd, some at GSFC Independent of Caltech
Uncertain start date	Can start now	Can start now

UMd Recommends

- UMd recommends pursuing Amptek option
 - smallest impact on Caltech
 - can start immediately
- Additional resources required
 - based on back-of-envelope design:
 - Additional mass: 150g (one extra board + additional height of housing)
 - Additional Power: 300-500mW (depends on availability of +/-6v from LVPS)
 - Additional Dollars: \$35k-\$50k (\$25k parts and boards, \$10-25k for manpower) + 2-3 weeks of design and assembly time at GSFC
 - Note: more manpower than this involved, but we will save a lot of time by getting the work done now, not next year.