STEREO/IMPACT Team Meeting

GSFC/IMPACT Status Report

Tycho von Rosenvinge

UC Berkeley 14 December 2001

GSFC/IMPACT Tasks

- HET
- SIT
 - Mechanical
 - ACTEL Chip: MISC + Front-End Logic
 - MISC Software
- SEP
 - Mechanical design of SIT, LET, HET + Common
 - Thermal design of SIT, LET, HET + Common
 - Act as SEP Coordinator

SEP Mechanical Design

- SIT sensor engineering model has been assembled from WIND spare parts and delivered to UofMD
- Extensive ICD drawings for SEPT, SIT, LET and HET are available at

http://sprg.ssl.berkeley.edu/impact/dwc/ICD

- LET L1 mounts have been designed and ordered
- Design of remaining HET and LET detector mounts is ongoing

Ahead SEP Configuration

SEP Locations on the Ahead Spacecraft

SEP Locations on the Behind Spacecraft

MISCs for SIT and HET

- 4 Minimum Instruction Set Computers (MISCs) are being used to control SIT, LET, and HET, to process data from each on-board, and to provide a Central DPU for SEPT, SIT, LET and HET
- This distributed architecture minimizes the interaction between sensors and facilitates independent testing of each sensor
- The SIT, LET, and HET MISCs each reside on a single Actel chip together with the corresponding sensor front-end logic
- EEPROM for the SIT, LET, and HET MISCs resides with the Central DPU

MISCs for SIT and HET, cont.

- All 4 MISCs have the same functional design
- The MISCs for LET and the Central DPU were laid out by Caltech using graphical schematic capture and will be programmed in FORTH
- The MISCs for SIT and HET were laid out by GSFC using Verilog and will be programmed in the MISC native assembly language
- The GSFC MISCs have been tested using a FORTH kernel and FORTH code from Caltech and appear to work identically to the Caltech MISC

MISCs for SIT and HET, cont.

- An assembler/linker has been written for the GSFC MISC
- An on-board debug monitor and a Windows-based debugger have been completed
- Initial SIT and HET code has been written and tested
- A software development plan has been completed for SIT and HET on-board software

HET

- Measures
 - electrons: 1 6 MeV
 - H, He: 13 100 MeV/n
 - ${}^{3}\text{He:}$ 16 50 MeV/n (resolution < 0.25 AMU)
 - $5 < Z < 27 \sim 30$ to 80 MeV/n
- Geometry Factor = $0.7 \text{ cm}^2\text{-sr}$
- Maximum event rate: 5000 events/sec
- On-board particle identification and binning
- Beacon Data: H, He, e; 1-minute time resolution

HET Telescope Schematic

HET H1 Detector Schematic

F-

HOLE LINE

100

PROPOSED HET 2 POSITION DETECTOR

HET Composite Response

SEP Thermal Status

Environmental Heat Inputs

• Incident Solar Flux Determined by Spacecraft Perihelion and Aphelion

- Solar Flux at 1 AU: 1366.5 W/m^2

Ahead S/C	Extreme	Solar Flux
Perihelion	0.879 AU	1768.6 W/m^2
Aphelion	1.040 AU	1263.4 W/m^2
Behind S/C	Extreme	Solar Flux
Perihelion	0.960 AU	1482.7 W/m^2
Aphelion	1.131 AU	1068.3 W/m^2

Thermal Coatings

- MLI Blanket Outer Layer:
 - ITO Silver Conductive Composite Coating

	Optical Properties			Effective Emittance (ϵ^*)
a _(bol)	ε _(bol)	$a_{(eol)}$	E _(eol)	0.03 - 0.01
0.1	0.68	0.2	0.64	

- Radiators
 - ITO Silver Conductive Composite Coating

-Deposited on Kapton and Bonded to Aluminum or Deposited Directly on the Aluminum

OPERATIONAL HEATER POWER

Spacecraft Interface Temp		Interface Resistance		
-23C to 55C		20.0 C/W		
Component	Operating Temp	Heater Power	Operating Temp	Heater Power
	С	watts	С	watts
HET		0.79		0.56
Detectors	-15 T0 +10		-25 T0 +10	
Electronics	-15 T0 +10		-25 T0 +10	
LET		0.82		0.47
Detectors	-15 T0 +10		-25 T0 +10	
Electronics	-15 T0 +10		-25 T0 +10	
SIT		2.64		1.53
Detectors	-15 T0 +10		-25 T0 +10	
Electronics	-15 T0 +10		-25 T0 +10	
SEPT/E		1.90		0.97
Detectors	-15 T0 +10		-25 T0 +10	
Electronics	-15 T0 +10		-25 T0 +10	
SEPT/NS		1.90		1.10
Detectors	-15 T0 +10		-25 T0 +10	
Electronics	-15 T0 +10		-25 T0 +10	
Central Electron	-15 T0 +10	1.98	-25 T0 +10	0.90
TOTAL		10.03		5.53

Installed heaters would be 25% larger than heater power shown for required margin.

Current Efforts to Reduce Operational Heater Power

- Use Updated Spacecraft Interface Temperatures
 - Instrument Thermal Interface Parameters in Requirements Documents would need to be Revised
- Relax Operating Temperature Limits
 - Internal Operating Limits in Requirements Documents would need to be Revised
- Increase Interface Resistance
- Demonstrate Reduced End of Life Heater Power Requirements

Typical Mounting Foot Showing Thermal Isolation

SEP Purge Flows on the Ahead Spacecraft

SEP Purge Flows on the Behind Spacecraft

SEP Issues

- Low Voltage Power Supply
 - Weight delta due to separate windings for SEPT
 - Will need to revise design for SEP Central Electronics and revise ICD drawings accordingly
- Thermal Design
 - VLSI lower operating temperature limit is TBD
 - Survival Heater Requirement
 - Survival Power Requirement is TBD
 - Survival heaters and their cables must be shielded to meet EMC requirements
 - Expected APL to be responsible for providing survival heaters and thermostats; this responsibility has been shifted to us; will require additional weight

SEP Issues, cont.

- Surface Cleanliness at Delivery
 - 300 A being requested by APL versus 500 B proposed by us
- The SEP teams want to be able to send commands and receive telemetry remotely using internet connections
 - This will significantly reduce the need for personnel to be located at APL during integration and test and hence reduce costs
- SEPT-N/S Location
- L1 Detectors (see LET presentation)