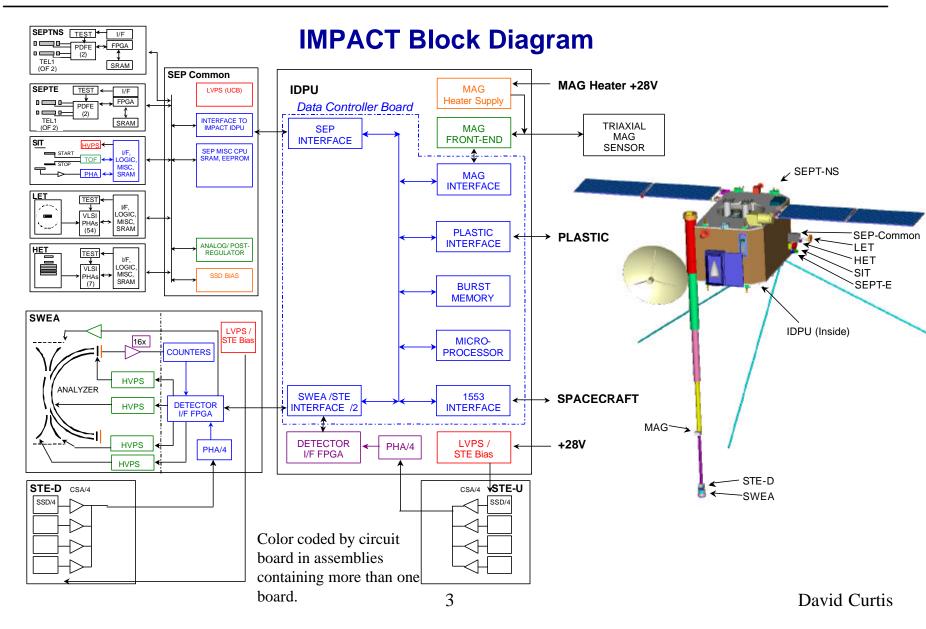
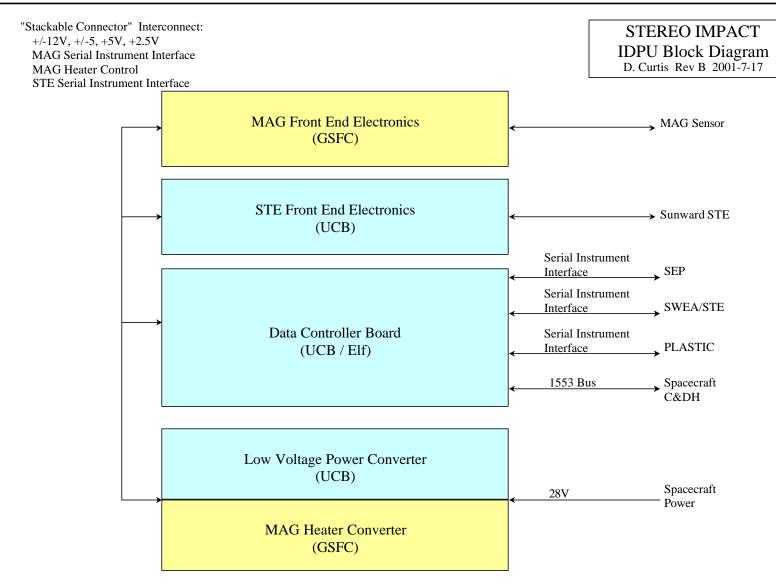
Agenda

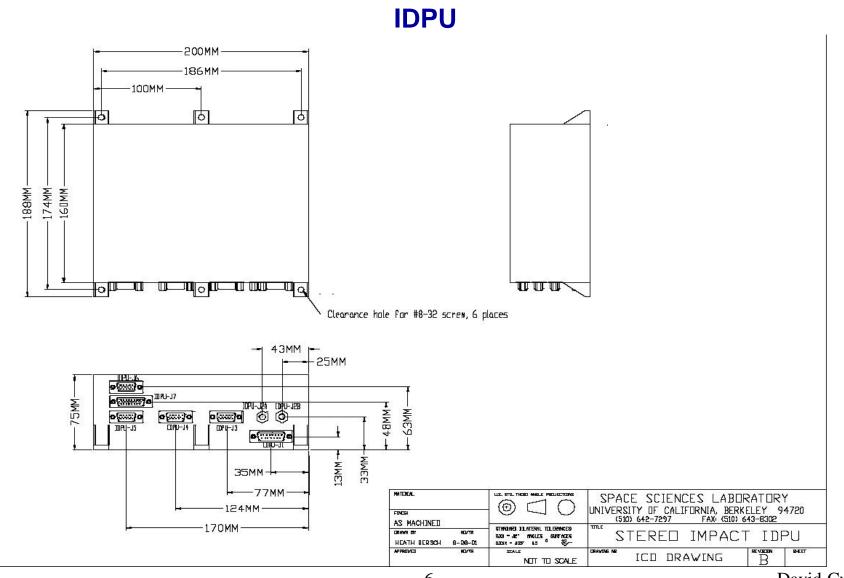
1

8:30-12:00 Status reports STEREO Project Status- Project (20 min) **IMPACT** Overall Status- Luhmann (10 min) **BOOM Package:** MAG- Acuna (15 min) SWEA- Aoustin/Sauvaud (15 min) STE- McBride (15 min) Boom- Ullrich (15 min) Break (10 min) SEP Package: SEPT- Mueller-Mellin (15 min) LET/Central- Mewaldt (15 min) HET/Mechanical- von Rosenvinge (15 min) SIT- von Rosenvinge (15 min) IDPU/GSE - Curtis (15 min) LVPS/SIT HVPS - Berg (15 min)


1:00-3:00 IDPU Software Requirements / Design review-Curtis (2 hours) Break (10 min)


12:00-1:00 Lunch, Discussion

3:10-6:00 Issues: Curtis/all PAIP- (20 min) ICD- (10 min) EMC/Grounding- (20 min) Telemetry/Beacon- (20 min) Contamination Control- (20 min) Environmental Requirements- (20 min) Schedule- (20 min)

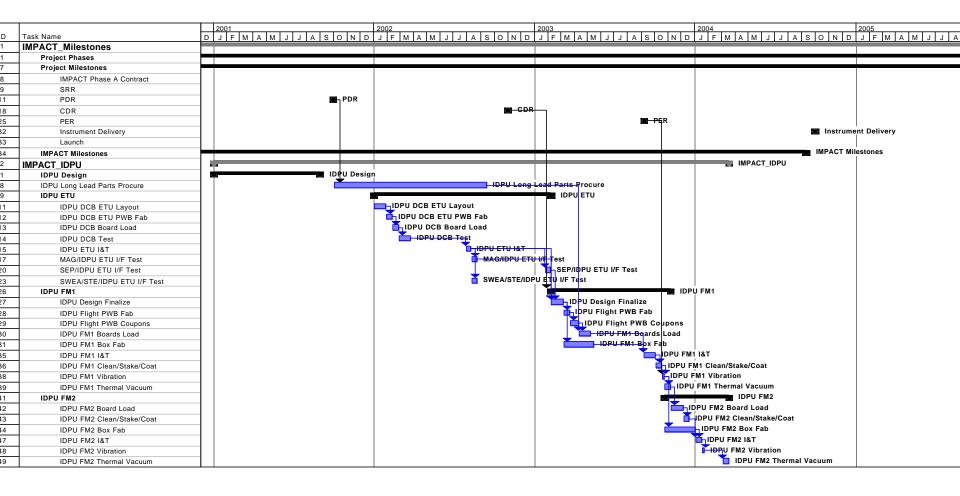

IDPU Status

IDPU Responsibilities

- System Design Dave Curtis
- MAG Analog GSFC / Mario Acuna
- MAG Heater GSFC / Mario Acuna
- LVPS Peter Berg
- Data Controller Board, FPGAs Elf / Dorothy Gordon
- STE Detector Interface Board Steve McBride
- Mechanical Design Heath Bersch
- Flight Software Dave Curtis
- EGSE:
 - IDPU Simulator Hardware Elf / Dorothy Gordon
 - IDPU Simulator Top Level Software Mike Hashii
 - IDPU Simulator SWEA, STE, MAG Software Mike Hashii
 - IDPU Simulator PLASTIC Software UNH
 - IDPU Simulator SEP Software Caltech
 - Command & Display GSE Mike Hashii
 - SWEA, STE, MAG Science Displays Mike Hashii
 - SEP Science Displays Caltech
 - PLASTIC Science Displays UNH

David Curtis

6


IDPU Status

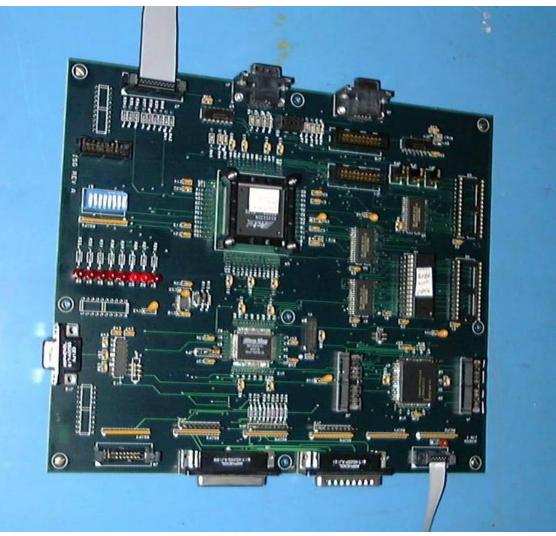
- IDPU Specification on line at:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Specifications/IDPUSpec_C.pdf</u>
- IDPU Flight Software Requirements are on-line at:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Specifications/IDPUSoftwareRequirements_B.pdf
 - http://sprg.ssl.berkeley.edu/impact/dwc/Specifications/PLASTIC_Software_rec.pdf
- Serial Interface Breadboard to verify interface tested
- IDPU Simulator GSE is very similar to the IDPU Data Controller Board (DCB), giving us some early experience with the processor and serial interfaces
- Work on ETU DCB to start in January, after the IDPU Simulator is completed
- Recent changes to IDPU Memory
 - Changed addressing to increase maximum code size from 32K to 64K
 - Increased RAM from 2M to 3M due to increased PLASTIC buffering requirements and to allow burst system to make better use of enhanced bitrate
- Flight Software Requirements / Design to be presented later today
- Flight Software coding has started
 - low level routines to aid in design trades

Non-Standard Parts

- UCB is working on up-screening a number of non-standard parts, including:
 - LT1353C quad opamp
 - AD8005A current feedback opamp
 - CA3080A transconductance opamp
 - MAX987 comparator
 - AD7664 16-bit ADC
 - LT1599 16-bit DAC
 - LT1877 regulator
 - MMBT3904, MMBT3906, MMBTH81 surface mount transistors
 - LM2672N-ADJ adjustable zener
- SCD/Travelers for screening these parts are approved by Project Parts:
 - LT1353C, JANTXV1N6642, JANTXV2N2222A, JANTXV2N2907, 54AC14DMQB, 54AC74DMQB and LM193AH/883
 - Some only require PIND, some require more extensive testing
 - More SCD/Travelers are in the works
 - Screening will start shortly to provide time to recover from problems
 - LT1024 being up-screened by CESR
- Screening costs are very high (up to \$30K a part type)
- Some of these parts will be used by other IMPACT team members and non-IMPACT STEREO instrumenters
 - Method of sharing screening costs has not been fully worked out

IDPU Schedule

Ground Support Equipment

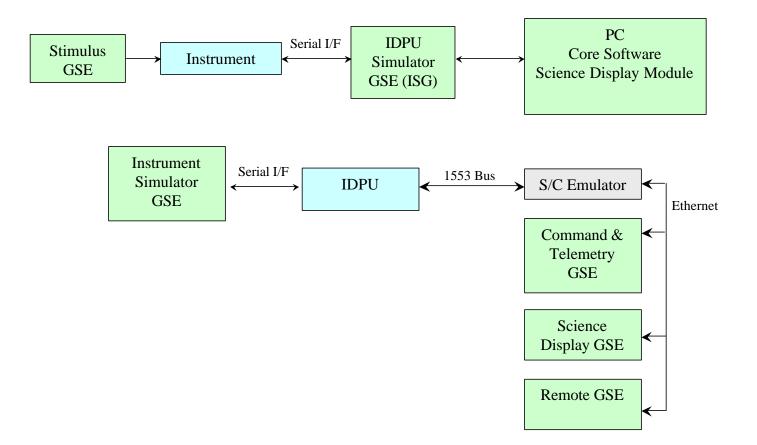

IDPU Simulator GSE

- Developed at UCB (with Elf)
- Provides ability to test instruments in the absence of the IDPU and verify the instrument / IDPU interface
- Consists of a black box (IDPU Simulator GSE, ISG) plus a PC
- ISG includes most of the functionality of the Data Controller Board, minus the 1553 interface
 - Includes a commercial 80C196 processor, FPGA with an early version of the flight DCB FPGA
 - Interfaces with PC via the printer port
 - Designed to IDPU Simulator Specification Document by Elf (who also designs the DCB)
 - Can be used as a test bed for IDPU software
 - Has an added Instrument Simulator feature which works the serial instrument interface in the reverse direction for IDPU testing
- PC software shall be developed at UCB
 - Based on LabWindows CVI development system
 - HESSI GSE heritage; STOL-like scripted command system
 - Science display modules written at the instrument home institution

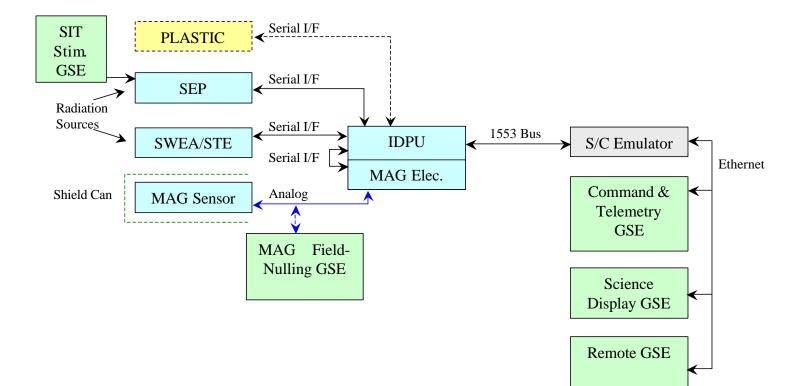
IDPU Simulator Status

- IDPU Simulator Hardware in test
- IDPU Simulator Software in work at SSL
 - Essential features have been extracted from HESSI GSE
 - Interface to hardware in test
- Simulator needs to be adapted to the requirements of the Instrument
 - Display & Command requirements
 - UCB to write the MAG and SWEA/STE versions
 - Caltech to write the SEP version, UNH to write the PLASTIC version
 - UCB can provide MAG version as a template
 - Since the IDPU is a bent pipe for SEP, SEP display requirements will be similar for the IDPU Simulator GSE and the later SEP Science displays;
 - We should look into making a version of the IDPU Simulator GSE that connects to the SEP Science Display GSE used at the Suite level
 - Simulators should be available early next year

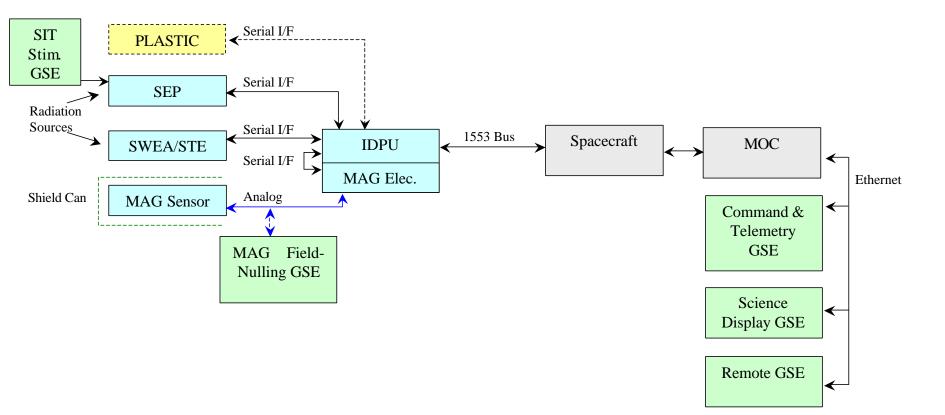
IDPU Simulator Electronics

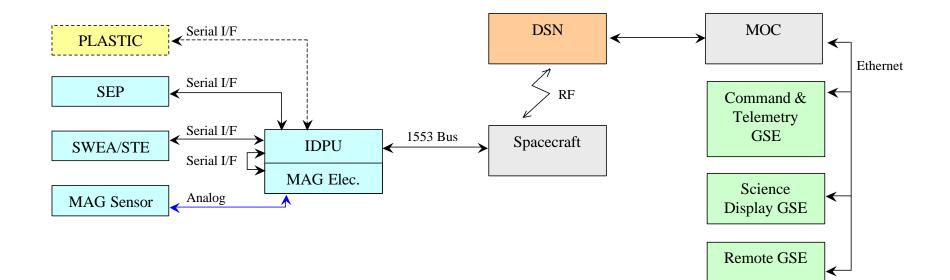

Command & Telemetry GSE

- Works with Spacecraft Emulator at suite I&T level
- Works with MOC at Spacecraft I&T level
- Runs commands and command scripts
 - STOL-like language
- Remote commanding & display via secure internet connection
- Displays housekeeping and instrument status information with limitchecking / alarms
- PLASTIC command scripts may be run on the IMPACT C&T GSE, or on a separate C&T GSE running the same software


Science Display GSE

- Decodes and Displays science data from instruments
- Provides adequate information to determine the health and functionality of the instrument in the I&T, Commissioning, and mission environment
- Runs on a second workstation (PC) in order to provide more display space, separate science and engineering functions, and improve the reliability of the C&T system
- Science Display GSEs will get data from the MOC or Spacecraft Emulator
- Science displays shall be developed by the instrument teams:
 - MAG, SWEA, STE UCB / Hashii
 - SEP Caltech
 - PLASTIC UNH


Instrument Bench Checkout Configuration


IMPACT Suite Integration GSE Configuration

IMPACT Spacecraft Integration GSE Configuration

IMPACT Mission Operations GSE Configuration

Issues

Key Documents

- IMPACT ICD, on APL Forum web site
- Environmental Requirements:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Project/EnvironmentalSpec7381-9003e.pdf
- EMC Requirements:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Project/EMC 7381-9030d.pdf
- Contamination Control Plan:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Project/ContaminationControlPlan 7381-9006-.pdf
- Import / Export Plan:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Project/460-PLAN-0025ImportExport.pdf
- IMPACT Performance Assurance Implementation Plan:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Plans/STEREO-IMPACT-PAIP_D.pdf</u>
- IMPACT Configuration Management Plan:
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Plans/IMPACTCMPlan_B.pdf</u>
- IMPACT Environmental Test Plan:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Plans/IMPACTEnvTestPlan_A.pdf
- IMPACT Performance Specification:
 - http://sprg.ssl.berkeley.edu/impact/dwc/Specifications/IMPACTPerformanceSpec_F.pdf

IMPACT PAIP

- A new version of the IMPACT PAIP has been negotiated with Project
 - Some new requirements for PLASTIC parts qualification
- NASA-Funded Institutions need to verify that they can meet the PAIP requirements before we sign off on this PAIP
- Major concern with non-NASA Funded Institutions
 - PAIP has Appendices describing the PAIP for each institution (except Lindau)
 - Project is unhappy about the lack of specifics in these plans
 - Some of the referenced documents have a wide range of applications, and there is sometimes no reference to what level is to be used
 - Signed-off LOAs state that NASA will provide "Performance Assurance Requirements"
 - Can we use GGS Wind 3DP PAIPs for CESR, ESTEC?

IMPACT ICD

- IMPACT ICD has been signed off as of PDR
 - Under Project change control
- IMPACT Team needs to review the document, verify the document is correct, and help fill in any TBDs
 - Issues found late will be costly to fix
- We need to decide the refurbishment requirements for the instruments on a case by case basis
 - PLASTIC will be refurbished while the spacecraft is shipped to the Cape
 - Refurbishment can be argued if there is risk of damage to the instrument during I&T which cannot adequately be verified except by an internal inspection or a test that cannot be performed on the spacecraft
 - Instruments with MCPs are often refurbished after environmental tests to verify that the detectors were not contaminated, and are completely functional
 - This decision is independent of the need to remove an instrument if it has trouble during I&T.
- We need a time interval for how long instruments can safely look at the sun
 - Kiel has provided a number for SEPT

EMC / Grounding

- STEREO has a severely constrained EMC due to the sensitivity of the SWAVES Instrument Radio receivers
 - Similar to Wind requirements
 - Sensitive to exposed conductors with millivolts of noise on them
- Highlights of the EMC control plan are:
 - Instrument chassis is bonded to spacecraft chassis with less than 5 milli-ohms impedance
 - No exposed harness all will be over-wrapped continuously with shielding
 - Problem for externally-mounted components such as heaters
 - Strict conducted emissions requirements placed on converters
 - Must run at a multiple of 50KHz, crystal-controlled
 - Signal ground / Secondary Ground / Chassis Ground connected together in each box
 - Helps us keep differential chassis ground / signal ground noise out of our detector front-ends
 - Remotely powered units (such as SEPT) should have isolated converters, connected to signal ground only at the load end
 - Avoids current loops through chassis, which are primarily a concern to MAG
 - We are working on the resource requirements to meet this requirement for SEPT
 - We will probably submit a waiver request for STE-U and SIT
 - The current for STE-U is small
 - SIT is physically close to SEP Central, where the LVPS is

Telemetry

- Our telemetry allocation has been raised from 2100bps to about 3300bps
- Agreed sample intervals: 1,2,10,30 sec, 1,5,15,30,60 minutes
- Proposed Allocations:
 - SEP Proposal from Rick Cook, using integral numbers of packets per minute
 - Need corresponding new data products & rates
 - MAG sample rate goes from 4Hz to 8Hz
 - STE goes to 8q x 16E @ 10 sec (was 16 sec)
 - SWEA goes to:
 - Moments: 13 @ 2 sec
 - PAD: 12q x 7E @ 10 sec (was 16 sec)
 - 3D: 80W x 16E @ 30 sec (was 60 sec)
 - Remainder goes into Burst playback
- There may be more bits available at CDR

	Was	Proposed
SEP:		
SEPT	120	70
SIT	240	418
LET	320	557
HET	120	209
Boom:		
MAG	192	384
SWEA	394	513
STE	64	102
Burst	486	845
Overhead	164	203
Total	2100	3300

Beacon Telemetry

- No longer share a beacon packet with PLASTIC
- Allocated one packet per minute (272 bytes, 36bps)
- **Proposed Allocation:**
 - 60 second resolution except MAG (10 sec)
 - Moments + PAD from SWEA
 - 8E x 2 dir from STE
 - SEP details on next page

	BPS
SEP:	
SEPT	5.87
SIT	3.20
LET	6.13
HET	3.73
Boom:	
MAG	4.80
SWEA	2.13
STE	6.67
Overhead	3.74
Total	36.27

				Geometry		
SEP		(MeV or M	AeV/nuc)	Factor	Number of	
<u>Sensor</u>	<u>Species</u>	<u>E1</u>	<u>E2</u>	(cm2sr)	Directions	<u>bps</u>
SIT	He	0.02	0.04	0.3	1	0.27
		0.08	0.16	0.3	1	0.27
		0.32	0.64	0.3	1	0.27
		1.29	2.56	0.3	1	0.27
	CNO	0.02	0.04	0.3	1	0.27
		0.08	0.16	0.3	1	0.27
		0.32	0.64	0.3	1	0.27
		1.29	2.56	0.3	1	0.27
	Fe	0.02	0.04	0.3	1	0.27
		0.08	0.16	0.3	1	0.27
		0.32	0.64	0.3	1	0.27
		1.29	2.56	0.3	1	0.27
					Sum SIT	3.20
SEPT	Electrons	0.02	0.05	0.2	4 separate	1.07
		0.05	0.1	0.2	4 summed	0.27
		0.1	0.2	0.2	4 summed	0.27
		0.2	0.4	0.2	4 separate	1.07
	Ions	0.02	0.1	0.24	4 separate	1.07
	(mostly	0.1	0.5	0.24	4 summed	0.27
	protons)	0.5	2.5	0.24	4 summed	0.27
		2.5	7	0.24	4 separate	1.07
	SEPT Status (1 bit/channel; 20 channels)				0.53	
					Sum SEPT	5.87

SEP Beacon Data Detail

SEP Sensor Sp				Geometry		
		(MeV or MeV/nuc)		Factor	Number of	
	Species	E1	E2	(cm2sr)	Directions	bps
LET	Protons	1.4	3	4.5	2	0.53
		3	6	4.5	1	0.27
	Helium	1.7	3	4.5	2	0.53
		3	6	4.5	1	0.27
		6	13	4.5	2	0.53
	3He	1.7	3.3	4.5	1	0.27
		3.3	13	4.5	1	0.27
	CNO	3	6	4.5	1	0.27
		6	13	4.5	1	0.27
		13	30	4.5	1	0.27
	Fe	3	6	4.5	1	0.27
		6	13	4.5	1	0.27
		13	30	4.5	1	0.27
		30	50	4.5	1	0.27
	Livetime					0.27
	H/He-Effic					0.27
	Z-Effic					0.27
	L1A-th					0.27
	L1B-th					0.27
	L2L2th					0.27
					Sum LET	6.13
HET	Electrons	1	4	0.5	1	0.27
	Protons	13	20	0.7	1	0.27
		20	40	0.7	1	0.27
		50	100	0.7	1	0.27
	He	13	20	0.7	1	0.27
		20	40	0.7	1	0.27
		50	100	0.7	1	0.27
	CNO	30	50	0.7	1	0.27
		50	100	0.7	1	0.27
	Fe	50	100	0.7	1	0.27
	Livetime					0.27
	Stop Effic.					0.27
	Pen. Effic.					0.27
	HET status					0.27
					Sum HET	3.73
	SEP Status					0.27
	5Er Status				SEP Total	19.

Contamination Control

- The spacecraft has strict contamination control requirements mostly due to the SECCHI instrument
 - http://sprg.ssl.berkeley.edu/impact/dwc/Project/ContaminationControlPlan 7381-9006-.pdf
- Dust and Non-volatile residue are carefully controlled; volatiles are of less concern to SECCHI; to the extent that we are concerned with volatiles killing our detectors, we need to continue to remind APL of our concerns
 - Tycho is doing a good job of pressing this issue
 - Quantitative requirements would be easier for the system to handle
- Instruments must be delivered to the spacecraft clean and baked out
 - External cleanliness will be verified at APL, probably class 300
 - Internal cleanliness must be imposed by the teams procedurally, or else the boxes must be sealed with a filtered vent to prevent dust from getting out
 - Bakeout must be verified by QCM measurement to ensure outgassing meets requirements
 - Failure to meet outgassing requirements will result in a long bakeout or possibly even dismantlement to remove the offending material

Environmental Requirements

- Environmental Requirements (except EMC) are not very unusual
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Project/EnvironmentalSpec7381-9003e.pdf</u>
 - Note that only Section 3 applies to instruments
- EMC Requirements are stringent as noted above
 - <u>http://sprg.ssl.berkeley.edu/impact/dwc/Project/EMC_7381-9030d.pdf</u>
- Parts must meet an 8KRad total dose and 80 MeVcm2/mg Latchup Level
- Instrument-level tests on BOTH flight units include:
 - Thermal Vacuum
 - Vibration: Shock, Sine Sweep, Random (Acoustic as required)
 - Mass Properties
 - EMC
 - Magnetics (Mario's test setup)
- We will be doing EMC as an integrated suite. The remaining tests are mostly at the box level
- The Electrostatic requirement is that exterior surfaces must be less that 10⁸Wsquare
 - Any non-conducting exterior surfaces must be identified and tracked at the system level
- Magnetic Materials shall also be tracked at the system level

Schedule

- There is concern that there is insufficient slack in the system schedule
- Project has moved up our delivery date to improve the slack in I&T, and would like to move us up some more
- SEP is currently on the "Critical Path" for the mission
 - This is due primarily to key personnel issues at Caltech and GSFC
- We need to work to improve slack
 - There is probably some "hidden" slack buried in tasks with generous durations
 - It is human nature to use up all the available schedule, so the buried slack will get eaten up, leaving nothing for problems encountered late in the flow
 - Slack must be managed like mass, power, and dollars. Managers must maintain adequate margins. Like other resources, schedule margin must be guarded closely.
 - There is some resistance to divulging all our slack for fear that it will get taken away from us by Project (witness the 4 weeks we recently lost). This must be balanced by the danger that inadequate slack will be detrimental to getting the mission confirmed.
- One way to improve our schedule is to skip final integration at UCB, and have SEP deliver directly to APL. The team needs to consider this possibility.
- Project wants regular updates to our schedule so they can track progress
 - We first need to firm up our schedules so they match up and show adequate margin
 - We then need to report on schedule status compared to this baseline monthly

Miscellaneous Issues

- We need to maintain our Parts & Materials Lists, preferably on a common format
 - Do I have HET & SIT Digital parts lists?
 - Parts lists must be approved by Project
- We need to develop a more detailed data analysis plan
 - Data formats, data products, etc.
 - We should set up a committee of concerned parties and have a kick-off telecon early next year
- Project would like to know what our ETU plans are:
 - What their fidelity is, what interface testing is done, and where they are maintained.
- We need to complete our RFA responses. Project has some comments to our initial responses which team members need to respond to.