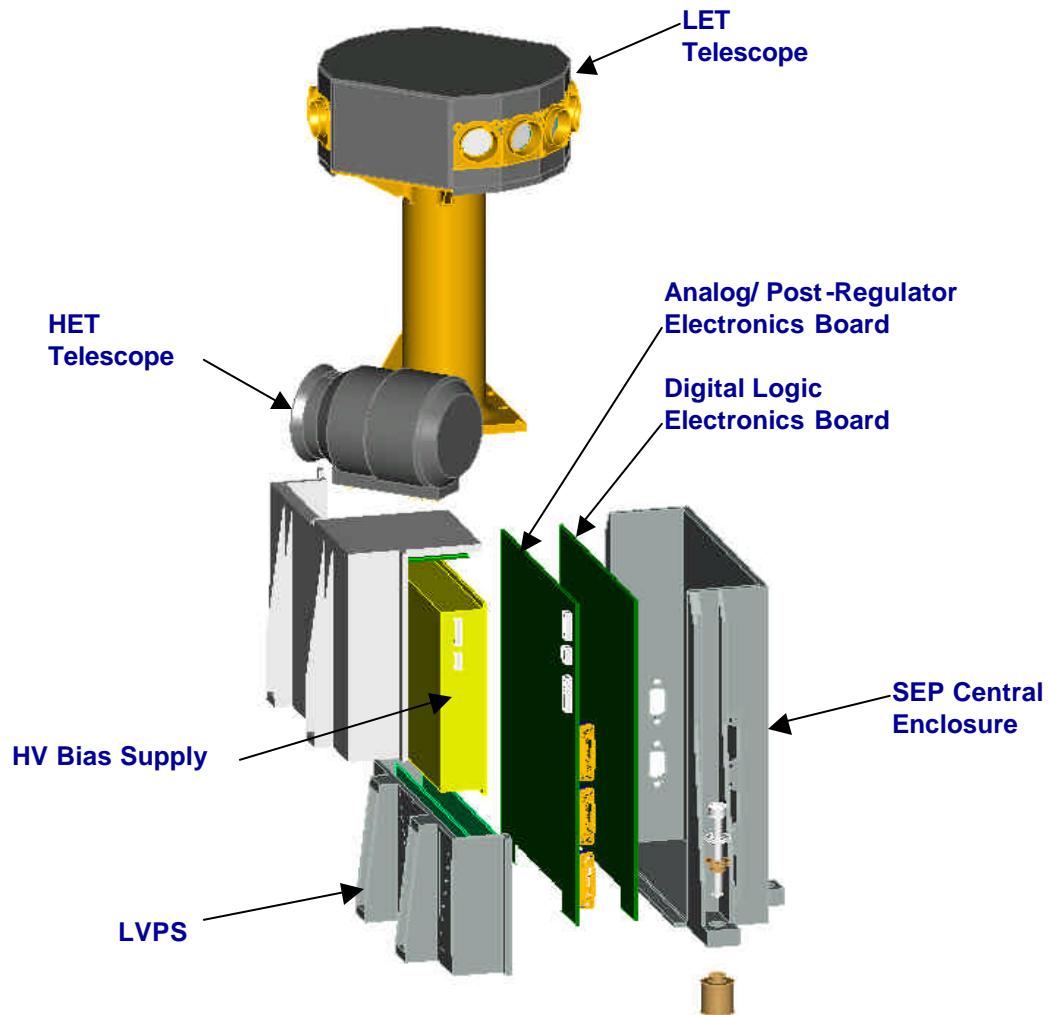
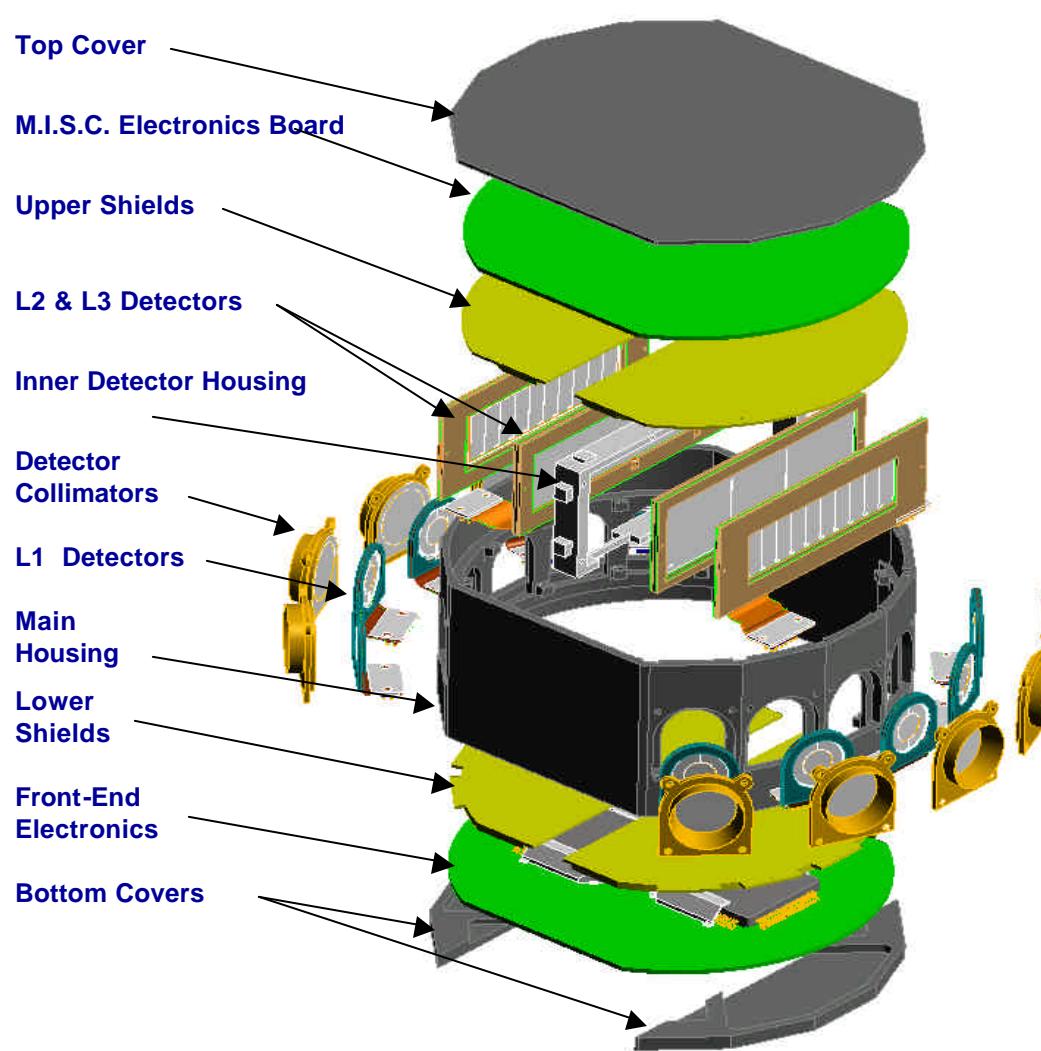
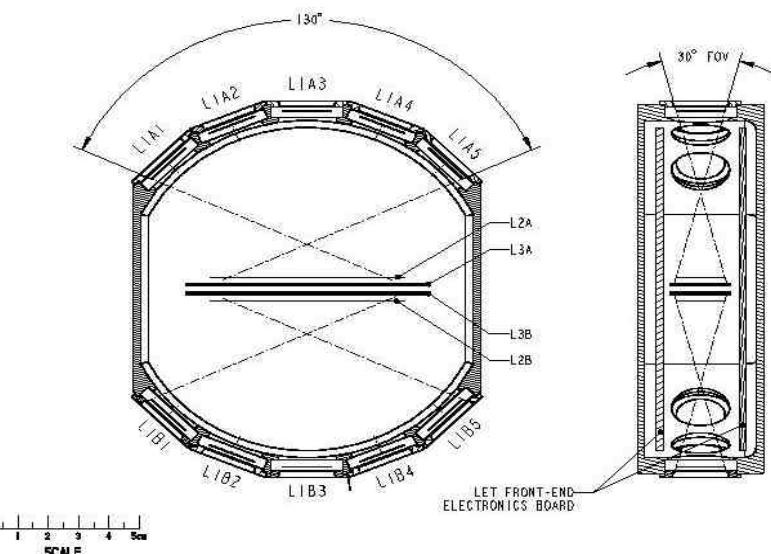

Low Energy Telescope (LET) Overview

Alan Cummings


ace@srl.caltech.edu

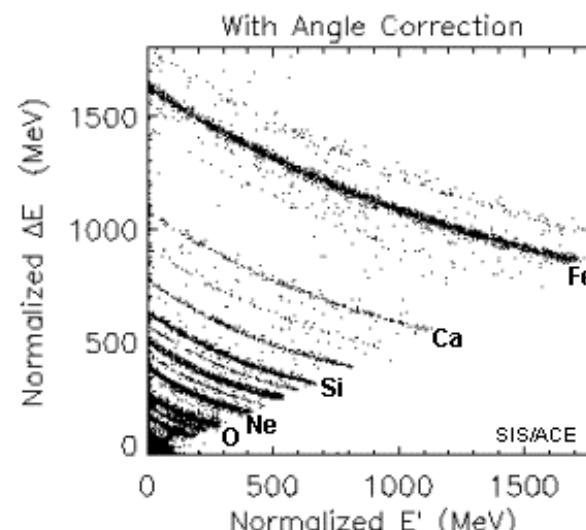
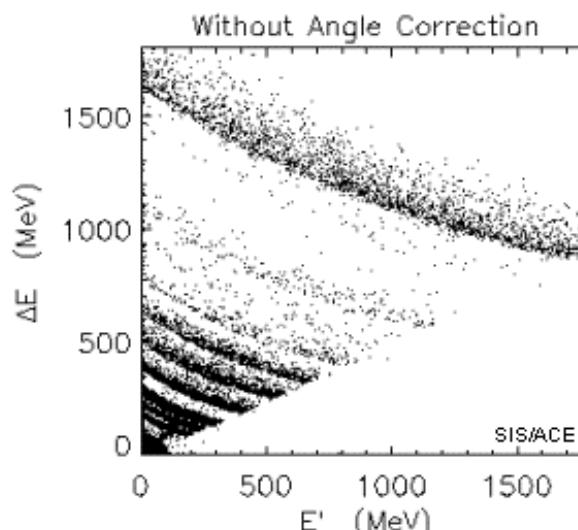
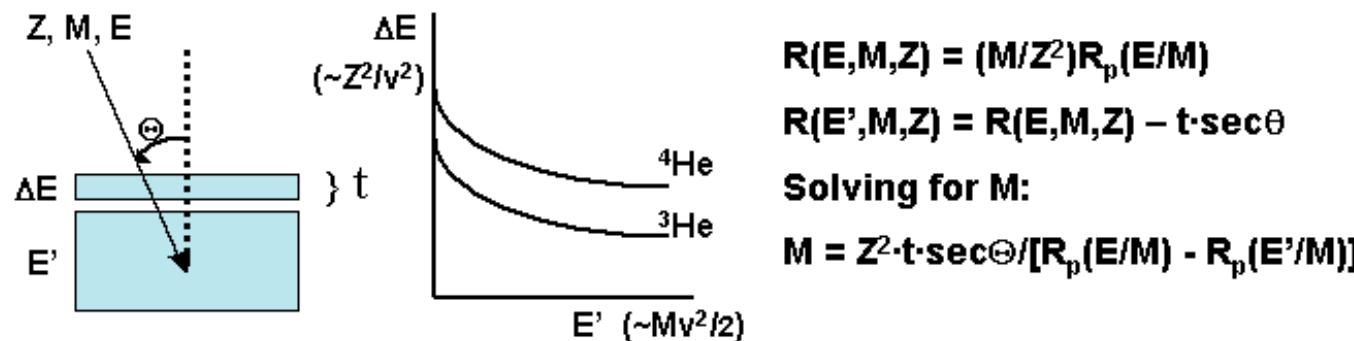
626-395-6708

SEP Instrument Suites

Main SEP Assembly

•Behind S/C configuration shown




Low Energy Telescope (LET) Schematic

LET System

- **dE/dX vs. E particle identifier**
- **Sensors (on each spacecraft)**
 - Ten L1 Si ion-implanted detectors, 20 μm x 2 cm^2 circular with 3 active areas, arranged in two sets of 5 around a “ferris wheel” (A side and B side form two identical telescopes)
 - Two L2 Si ion-implanted detectors, 50 μm x 6.4 cm x 1.6 cm rectangular with 10 active areas, one for A side and one for B side
 - Two L3 Si ion-implanted detectors, 1 mm x 7.8 cm x 2.0 cm rectangular with 2 active areas, one for A side and one for B side
- **4 Pulse-Height Analysis System Integrated Circuit (PHASIC) chips packaged in 4 hybrids; each contains 16 channels of analog to digital signal processing**
- **One minimal instruction set computer (MISC) implemented in an Actel gate array**
- **SRAM**
- **Detector bias supply (shared, in SEP Central)**
- **Low voltage power supply (shared, in SEP Central)**
- **Analog/Post-regulator (shared, in SEP Central)**
- **Mechanical housing & bracket**

Method of Element and Isotope Identification

LET Responsibilities

- **Caltech**
 - Low Energy Telescope development/test (lead)
 - Detector procurement
 - Flight software, including on-board algorithms (lead)
 - Electronics, including PHASIC and MISC
 - SEP integration & test
 - Scheduling
- **JPL**
 - LET development/test (assist)
 - GSE development
 - L1 detector testing
- **GSFC**
 - LET mechanical design and fabrication (e.g., detector mounts, telescope, and bracket)
 - LET thermal design
 - On-board algorithms (assist)
 - L2, L3 detector testing
- **Space Instruments**
 - Detector bias supply
 - Analog/Post-regulator
- **U. C. Berkeley**
 - Low voltage power supply

LET Personnel

- Tycho von Rosenvinge, SEP Coordinator, GSFC, tycho@lheamail.gsfc.nasa.gov
- Dean Aalami, Bias supply & analog/post-reg boards, SI, dean@spaceinstruments.com
- Jill Burnham, Layout support, Caltech, jill@srl.caltech.edu
- Rick Cook, Lead Electronics Engineer, Caltech, wrc@srl.caltech.edu
- Alan Cummings, Project Manager at Caltech, Caltech, ace@srl.caltech.edu
- Andrew Davis, On-board software & LET testing, Caltech, ad@srl.caltech.edu
- Beverley Eyre, LET L1 detector thinning, JPL, fbeyre@mail1.jpl.nasa.gov
- Sven Geier, Detector testing, Caltech, sven@srl.caltech.edu
- John Hawk, Thermal engineering, GSFC, john.hawk@gsfc.nasa.gov
- Branislav Kecman, Electronics Engineer, Caltech, kecman@srl.caltech.edu
- Allan Labrador, Software support & det. testing, Caltech, labrador@srl.caltech.edu
- Rick Leske, Accelerator and other testing, Caltech, ral@srl.caltech.edu
- Dick Mewaldt, LET design & testing, Caltech, rmewaldt@srl.caltech.edu
- Vincent Nguyen, Electronics Engineer, Caltech, vincent@srl.caltech.edu
- Bob Radocinski, Electrical GSE, JPL, Caltech, Robert.G.Radocinski@jpl.nasa.gov
- Donald Reames, LET On-board algorithms, GSFC, reames@lheavx.gsfc.nasa.gov
- Stacia Rutherford, Grants Manager, Caltech, stacia@srl.caltech.edu
- Sandy Shuman, Mechanical design, GSFC, sandy@lheapop.gsfc.nasa.gov
- Ed Stone, Management, Caltech, ecs@srl.caltech.edu
- Janet Valenzuela, Document control & tech. support, Caltech, janval@srl.caltech.edu
- Mark Wiedenbeck, Detectors & LET testing, JPL, Mark.E.Wiedenbeck@jpl.nasa.gov

Applicable Documents

- Phase A Study for the IMPACT Investigation on STEREO, Volume 1: Tech. Sect., dated July, 2000
- STEREO Mission Requirements Document
- STEREO EMI/EMC Control Plan, JHU/APL 7381-9030
- STEREO Contamination Control Plan, JHU/APL 7381-9040
- STEREO Environments Definition, Observatory, Component and Instrument & Test Requirements Document, JHU/APL 7381-9003
- STEREO IMPACT Interface Control Document, JHU/APL 7381-9011
- STEREO Mission Risk Management Plan
- STEREO IMPACT Performance Assurance Implementation Plan (PAIP)
- STEREO IMPACT Configuration Management Plan
- LET-SEP_Central Interface Control Document, STEREO-CIT-009.A
- LET and SEP_Central Software Development Plan, STEREO-CIT-001.J
- LET and SEP_Central Software Requirements, STEREO-CIT-002.E
- LET Level 1 Data Format, STEREO-CIT-004.B
- LET Science Telemetry Data Frame Format, STEREO-CIT-003.4-2
- P24 MISC Microprocessor Users Manual, STEREO-CIT-005.A
- LET Functional Test Plan, STEREO-CIT-006.A
- SEP Sensor Suite Commanding and Users Manual, STEREO-CIT-007.A
- Caltech STEREO PHASIC Design Document, STEREO-CIT-013.A
- Documents and schematics are available at <ftp://mussel.srl.caltech.edu/pub/stereo/docs> , <ftp://mussel.srl.caltech.edu/pub/stereo/CDR> , or <http://sprg.ssl.berkeley.edu/impact/dwc/>

LET Reviews and Action Item Status

- **STEREO IMPACT SEP/MAG Peer Review, 4/19/01**
- **STEREO IMPACT Project Site Visit to Caltech, 7/26/01**
- **STEREO IMPACT System Peer Review, 8/2/01**
- **Preliminary Design Review, 9/11/01**
- **Software Design Review, 4/30/02**
- **Contamination Peer Review, 10/24/02**
- **Responded to all action items from these reviews**

EMC/Contamination/Environmental

Bias supply not synchronized

- Waiver EMC3A submitted and approved

Contamination

- SEP contamination control plan not received from Project as of 13 November 2002
- Project-supplied contamination control engineer visited and made informal recommendations
- JPL contamination control engineer visited, measured particulate counts in our assembly lab (room 5 Downs -> class 100K+) and on clean benches (Class 0), and made recommendations
- Plan is to use similar techniques, but with more attention to contamination issues, to assemble and test LET as were used on ACE SIS & CRIS which were largely assembled and tested in our lab
- LET L1 detectors will be stored in dry nitrogen and testing primarily done in a controlled room (clean room garments required for entry) – same as on ACE
- GSFC will do testing on L2 and L3 detectors in a clean environment
- LET flight units will be kept on clean benches; clean benches to be roped-off to cut down on foot traffic in the area – same as on ACE
- Personnel will use gloves and clean room garments – same as on ACE
- Will bag and purge during operations off the clean bench, e.g., accelerator testing, vibration, etc.
- Considering use of a clean tent if bagging for transfer between clean benches is frequent
- Will do bake outs according to Contamination Control Plan
- Will do final clean of exterior surfaces (to get from expected 500A level to 300A for delivery to JHU/APL)

EMC/Contamination/Environmental (continued)

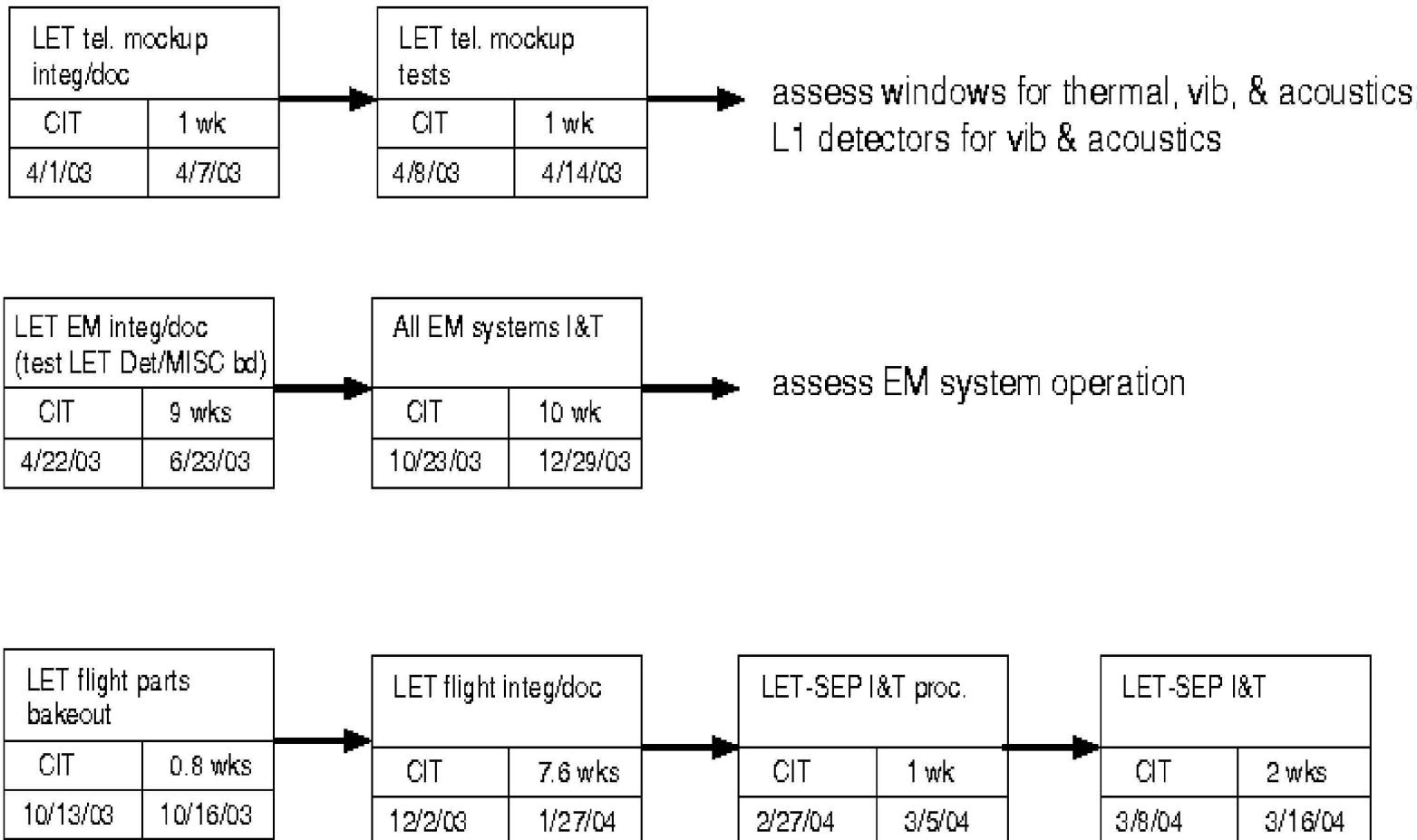
- **Contamination (continued)**
 - Incoming flight sensor assemblies (HET, SIT, and SEPT) will be unpacked on clean bench
 - JPL contamination control engineer will inspect external surfaces to establish incoming cleanliness
 - Will have 4 clean benches to handle all flight assemblies
 - Final clean of all may be necessary to get to 300A level for delivery
- **Bake out of assemblies after sensors installed must be done at relatively low temperature (<35-40 C)**
 - For LET & HET we are doing contamination test of detector & mount in next few weeks to assess outgassing of the sensitive detectors in their mounts
 - May have to pre-bake out the mounts before detectors are installed
 - Other parts can be baked out at higher temperatures before installing flight detectors
- **Environmental**
 - Test program defined by STEREO Environments Definition, Observatory, Component and Instrument & Test Requirements Document, JHU/APL 7381-9003 and by LET Verification Matrix

LET Verification Plan

- **Detectors:**
 - L1's tested at Micron/Caltech/JPL; L2's & L3's tested at Micron/GSFC
 - Tests at Micron prior to delivery include random vibration and thermal cycle
 - Tests at Caltech/JPL/GSFC include noise & breakdown, thermal vacuum, and alpha particle response
 - Also will mockup housing/bracket and do acoustics & vibration tests
 - Thickness of L1 detectors will be measured with alphas
- **Hybrids (containing PHASIC chip):**
 - Electrical tests at room temp, hot, and cold
 - Radiation tests on prototype
 - Leak tests, etc. per Class H
- **Detector/MISC board:**
 - Originally two boards but now one single rigid-flex board
 - Board will be electrically tested over temperature

LET Verification Plan (continued)

- **Windows:**
 - Vibration, acoustics, and thermal cycle in mockup
- **LET System:**
 - Many tests per Verification Matrix
 - Environmental tests will be in conjunction with HET & SEP Central
 - EMC/EMI at UCB
 - Thermal vac, acoustics, and vibration at JPL
 - End-to-end test at accelerator
 - Functionality testing with pulsers and alpha particles
 - Simulation of instrument response


LET Verification Matrix

Verification Matrix for STEREO/IMPACT/SEP/LET															Revision Date: 11/08/02	
															Revision Number: 5	
Hardware Description		Tests													Comments	
Level of Assembly	Item	Noise & Brkdown	Thermal vacuum	Alpha/s & particle accelerator	Elect. test, rm. Temp	Elect. Test, hot	Vibration, Sinusoidal	Vibration, Random	Shock	Acoustics	Pressure change	Voltage margins	Thermal cycle	Thermal balance	Life Test	
C	Detectors, PT	X	X	X	X	X	X	X		X			X		X	Acoustics in BB with windows
C	Detectors, F	X	X	X	X	X	X	X								
C	Hybrids, PT			X	X	X									X	
C	Hybrids, F			X	X	X							X		X	Also standard class H tests
C	LET detector/MISC board, EM			X	X	X					X					
C	LET detector/MISC board, F			X											X	X
C	Connectors, F															X
C	Windows, BB						X		X			X				Include L1 detectors for vib & acoustics
I	Instrument, F1	H	X	X	X	X	H	H	A	X	A	X	X	X	H	Protoflight levels for vib; full EMC at suite
I	Instrument, F2	H	X	X	X	X	H	H	A	X	A	X	X	H	H	Acceptance levels for vib; workmanship for EMC

Legend:

Level of Assembly	Unit Type	X = Test required
		A = Analysis
C = Component	BB = Breadboard	H = test at a higher level of assembly
I = Instrument	EM = Engineering Model	
	PT = Prototype	
	PF = Protoflight	
	F = Flight	
	F1 = Flight unit #1	
	F2 = Flight unit #2	

LET Integration & Test Flow

Outline of LET Functional Test

- The following functional test modules have been designed for use in ground and possibly in-flight testing (see LET Functional Test Plan, document no. STEREO-CIT-006.A).
 - 1) ADC Calibration
 - Use built-in test pulsers (5 values) and 8-bit DAC
 - Calibrate all 54 ADCs at 32 specified DAC levels
 - Takes 15 minutes at ~5 pulses/second
 - 2) Logic Test
 - Pulses detector combinations in specified patterns to test event identification, sorting, and prioritization for telemetry
 - Includes 1024 different detector combinations
 - Includes 64 pulse-height combinations from four DACs
 - 3) ADC Threshold Test
 - Measures all 108 ADC threshold levels by pulsing 256 selected levels and monitoring rate data
 - Also monitors noise performance
 - Takes ~10 minutes to run

LET In-flight Livetime and ADC Calibration

These two tests can be run continuously in-flight and on the ground to monitor ADC stability and instrument livetime performance.

1) ADC STIM Mode

- Completes full test of all 54 ADCs (32 DAC levels) in 8 hours
- Essentially same as ADC Functional Test but run at ~0.1 pulses/sec

2) Livetime Monitor

- Stimulates 12 different event types to at fixed rate of ~2/sec
- These events compete with normal rates for on-board analysis
- Monitors livetime to <0.3% accuracy per hour at “background” event rates up to 10^4 /sec

Risks, Issues, & Mitigations

- **L1 detector fabrication technique is new**
 - Started a plan B approach as a backup using conventional fabrication method (with likely poorer performance)
- **Windows covering L1 detectors on Sun-facing side may be thermally stressed**
 - Thermal analysis indicates 60 deg temperature swing
 - Window is proposed to be 8 um Kapton with vapor deposited gold coating on inside and ITO silver conductive composite on outside
 - WIND EPACT instrument had nearly identical windows but it saw Sun only 50% of the time
 - ACE SIS stared at Sun (always within about 45 deg) but had larger-area, thicker, and additional windows (25 um, 8 um, and 8 um)
 - Telescope design will prevent rupture of one window from light contamination of other L1 or L2 detectors
 - Thermal tests of prototype windows will be conducted
- **LET “Ferris Wheel” is on a bracket and may have problems with vibration**
 - Vibration analysis underway
 - Vibration tests of mockup will be conducted
- **PHASIC chip is no longer high risk item**
 - 2nd version in process
 - 1st version good enough to keep design tasks and tests going; possibly could be used
 - 1st version passed radiation tests
 - 3rd run possible if 2nd version fails – not thought to be likely

Risks, Issues, & Mitigations (continued)

- **Layouts might not fit in chosen board sizes**
 - Schematics and layout assessments have been done but not actual layouts
 - Impact would be to make any affected housing slightly larger
 - Weight would increase accordingly
 - Should know by end of 2002 for questionable one
 - Schedule impact should not be major as final housing drawings are not complete

LET Milestones

- CDR 11/22/02
- PHASIC version 2 chips received from vendor 12/31/02
- LET L1 detector decision date 1/31/03
- Flight hybrids tested and ready 3/25/03
- LET Detector/MISC EM board tested 6/23/03
- LET Detector/MISC flight boards tested 10/28/03
- LET detectors tested & selected 11/25/03
- EM systems test complete (with SEP Central + others) 12/29/03
- LET flight mechanical parts ready 9/1/03
- LET telescope flight integration finished 1/27/04
- LET-SEP integration & test finished 3/16/04
- Remaining schedule addressed in SEP I&T section

Open Issues/Concerns

- See Risks & Mitigations slide
- Schedule needs to be re-baselined
- Budget is tight with no reserve held at Caltech