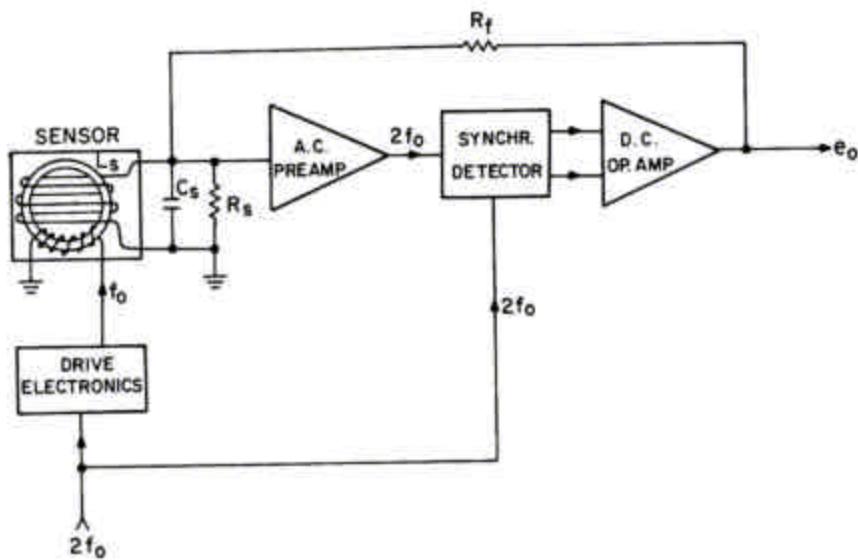
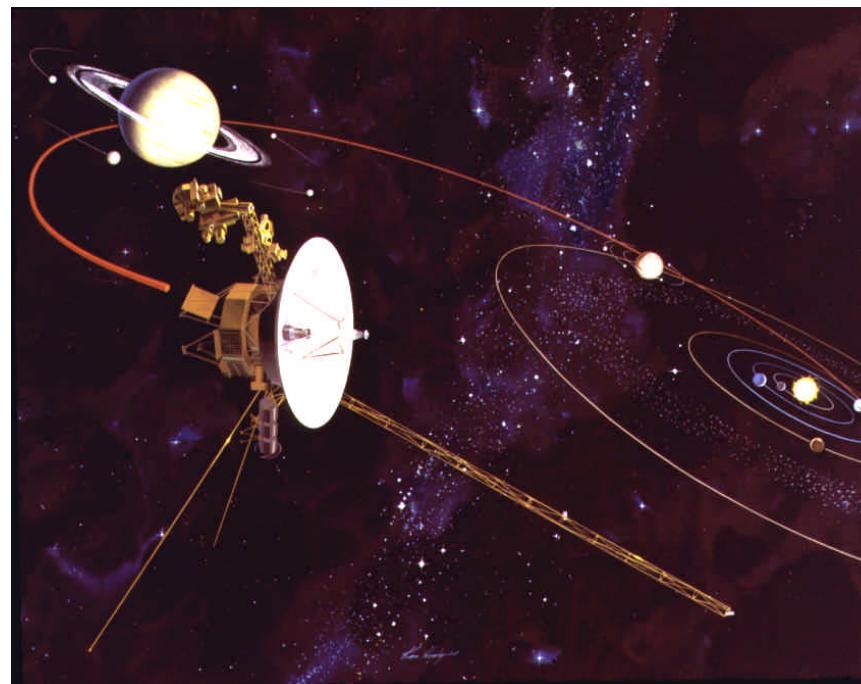


MAGNETOMETER (MAG)

M. H. Acuña


NASA/GSFC Laboratory for Extraterrestrial Physics

Magnetometer (MAG)


Instrument Characteristics:

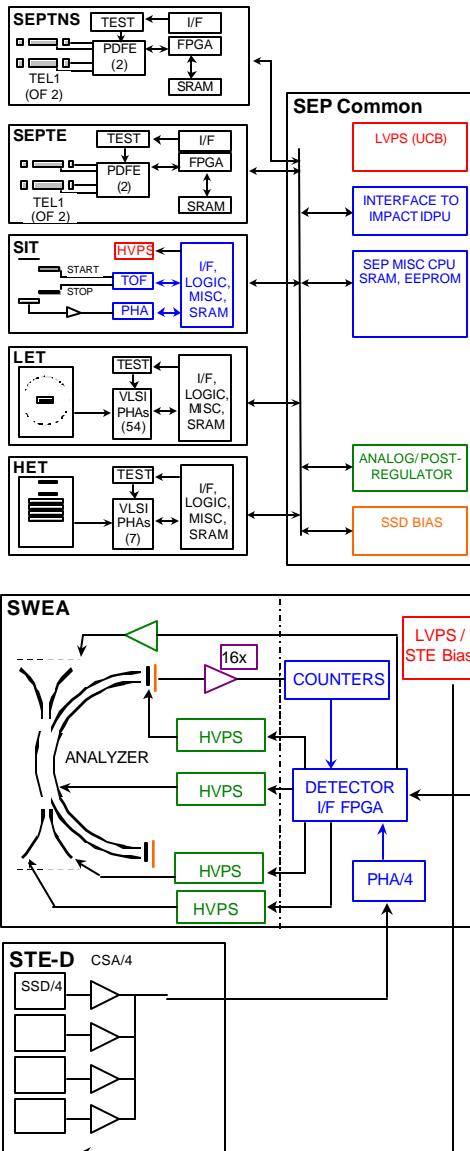
- Dual-range, single triaxial fluxgate magnetometer
- Wide dynamic range: ± 0.01 nT to $\pm 65,536$ nT in two dynamic ranges: ± 512 nT and $\pm 65,536$ nT
- Allows for testing in the Earth's field without special equipment – significant simplification and cost savings
- Instrument heritage spans > 30 years and > 40 instruments including VOYAGER, WIND, NEAR, ACE, DMSP, LP and MGS
- Fluxgate sensor & electronics manufactured and tested at GSFC and integrated into IMPACT IDPU and Boom
- Fold-back current limiting isolators to protect IDPU power supply in case of failures
- MAG software already developed by UCB for MGS and LP

Magnetometer (MAG)

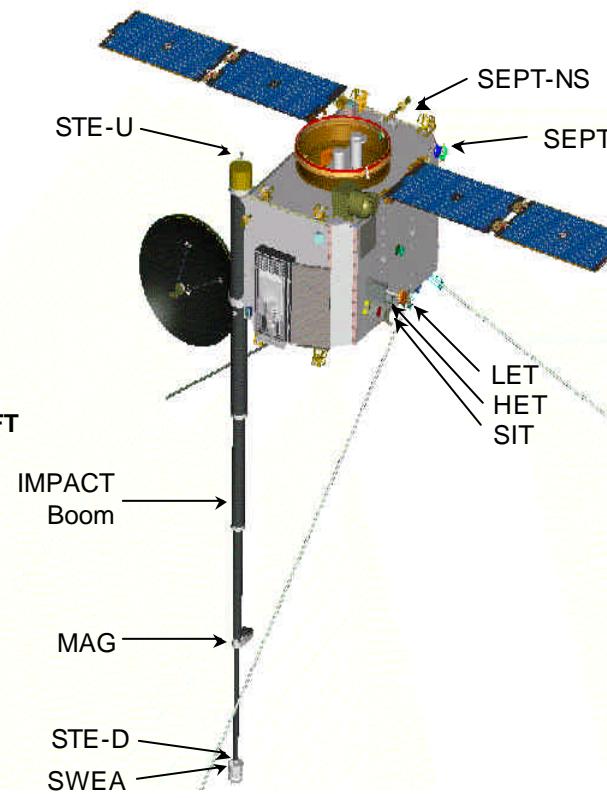
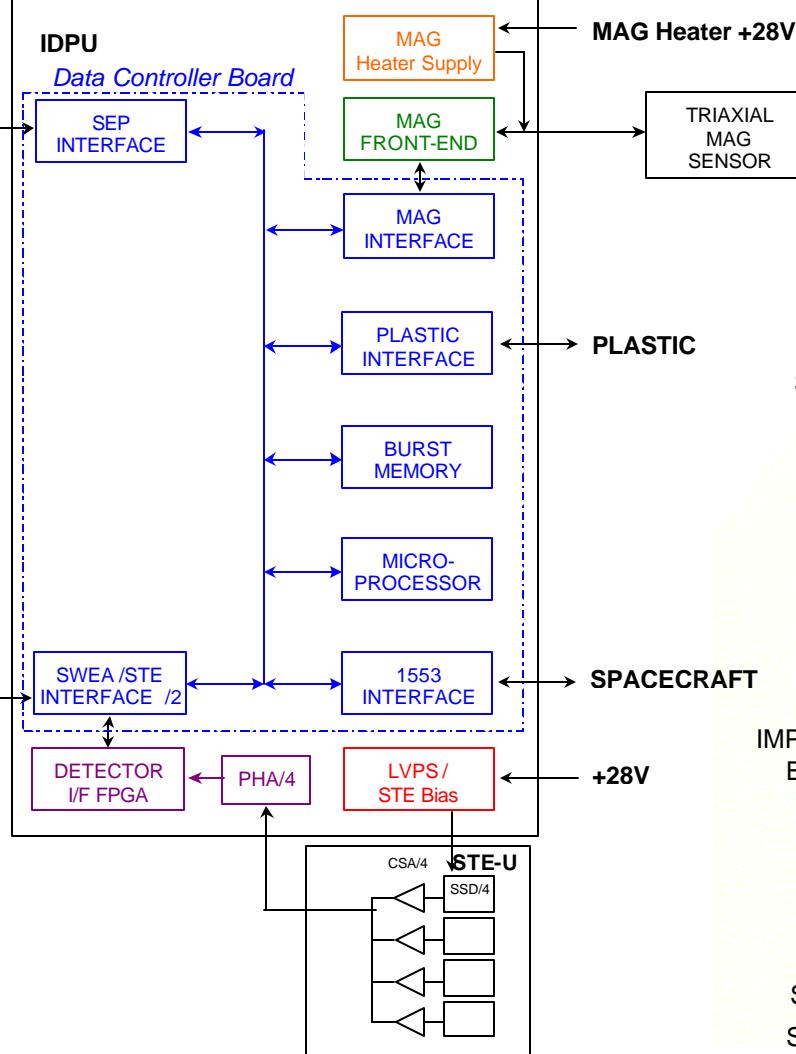
COMMON DESIGN WITH VOYAGER AND OTHER FLIGHT INSTRUMENTS. STILL OPERATIONAL 25 YEARS AFTER LAUNCH

FLUXGATE MAGNETOMETER SIMPLIFIED BLOCK DIAGRAM

MAG Performance Requirements


CDR

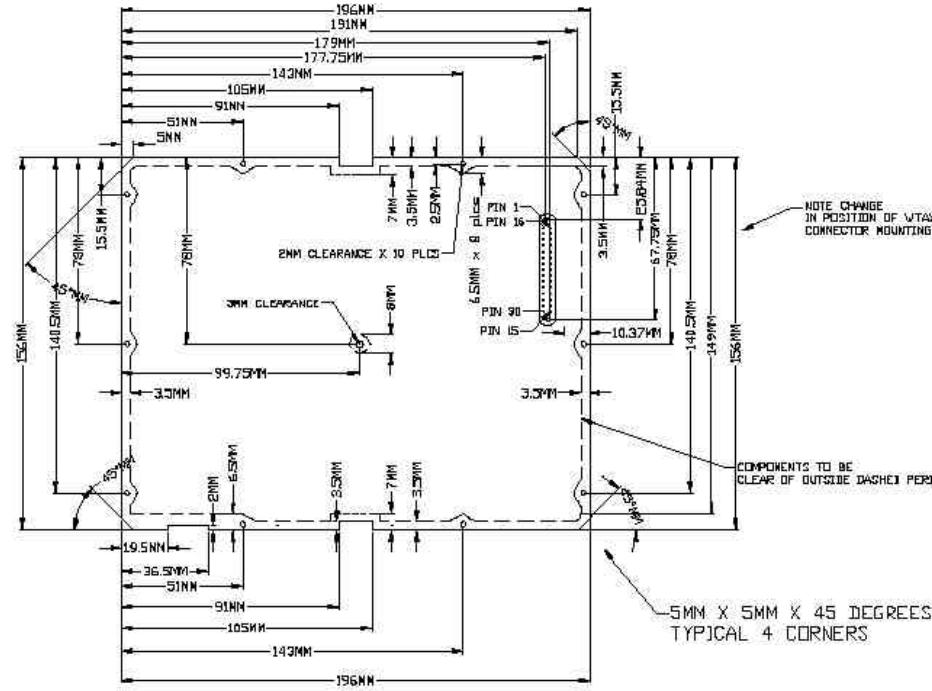
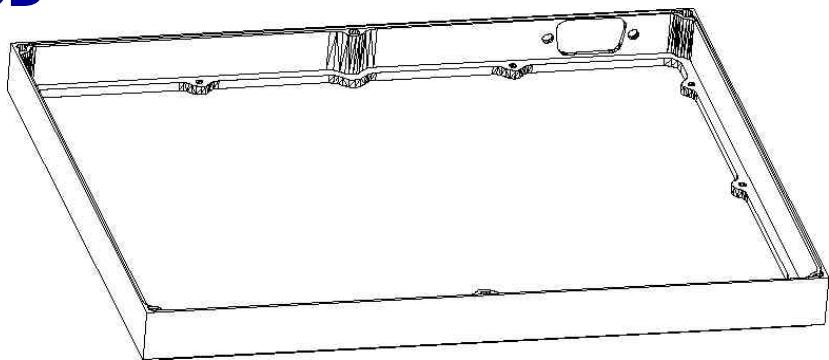
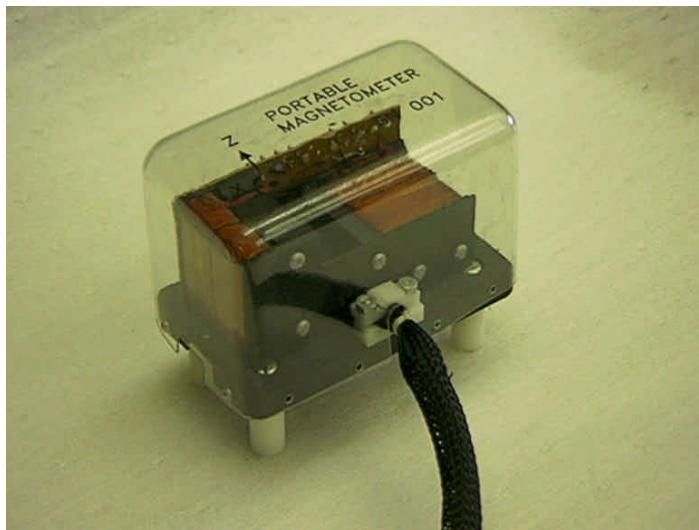
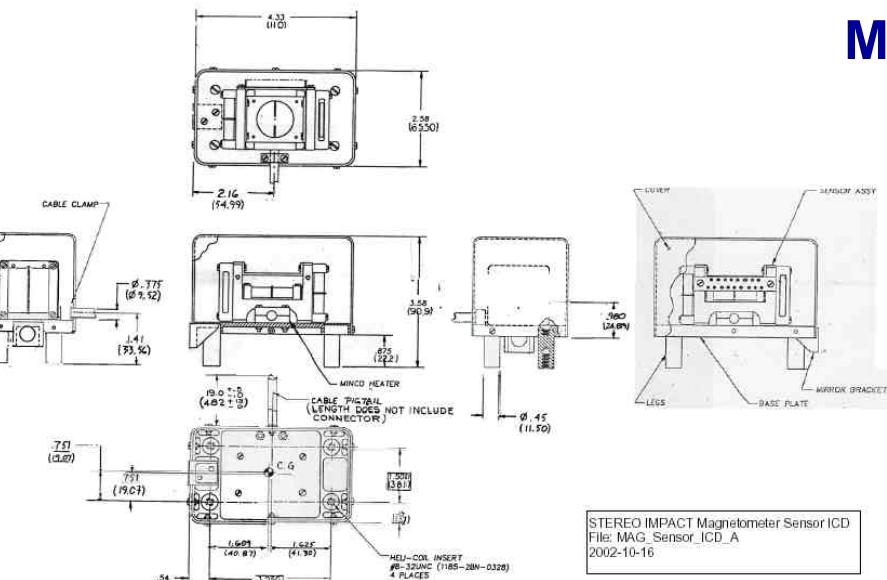
Description	Goal	Requirement	Source
Noise level	0.01 nT	0.05nT	Derived from MRD 4.7(K) and solar wind characteristics
Absolute Accuracy	+/- 0.1 nT	+/-0.1nT	MRD 4.7(K)
Range	+/-512 nT, +/-65536 nT	+/-512 nT	MRD 4.7(K)
Drift	+/-0.2 nT/yr	+/-0.2nT/yr	Derived from Absolute accuracy & MRD 4.6.2.6.1
Time Resolution	1/4 sec. 1/32 sec. (Burst)	1 sec	MRD 4.7(K)



PDR

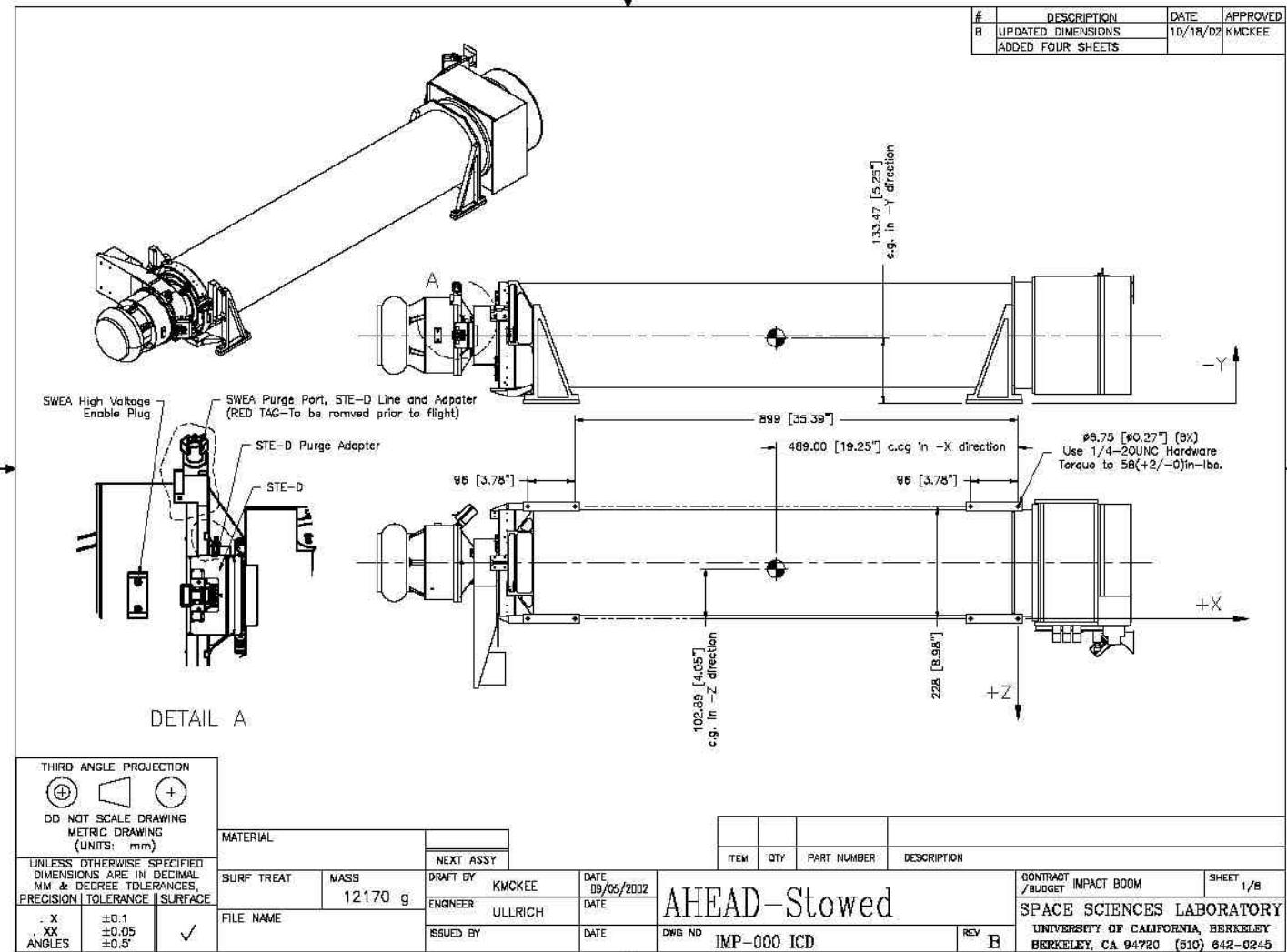
Description	Goal	Requirement
Noise level	0.01 nT	0.01 nT
Absolute Accuracy	+/- 0.1 nT	+/- 0.1 nT
Range	+/-512 nT, +/-65536 nT	+/-512 nT, +/-65536 nT
Drift	+/-0.2 nT/yr	+/-0.2 nT/yr
Time Resolution	1/4 sec. 1/32 sec. (Burst)	1 sec.

MAG addresses mission level 1 requirement 01.01.0008, Magnetic Field Measurement, which in turn is related to Science Objective 4, Improved determination of the structure of the ambient solar wind.

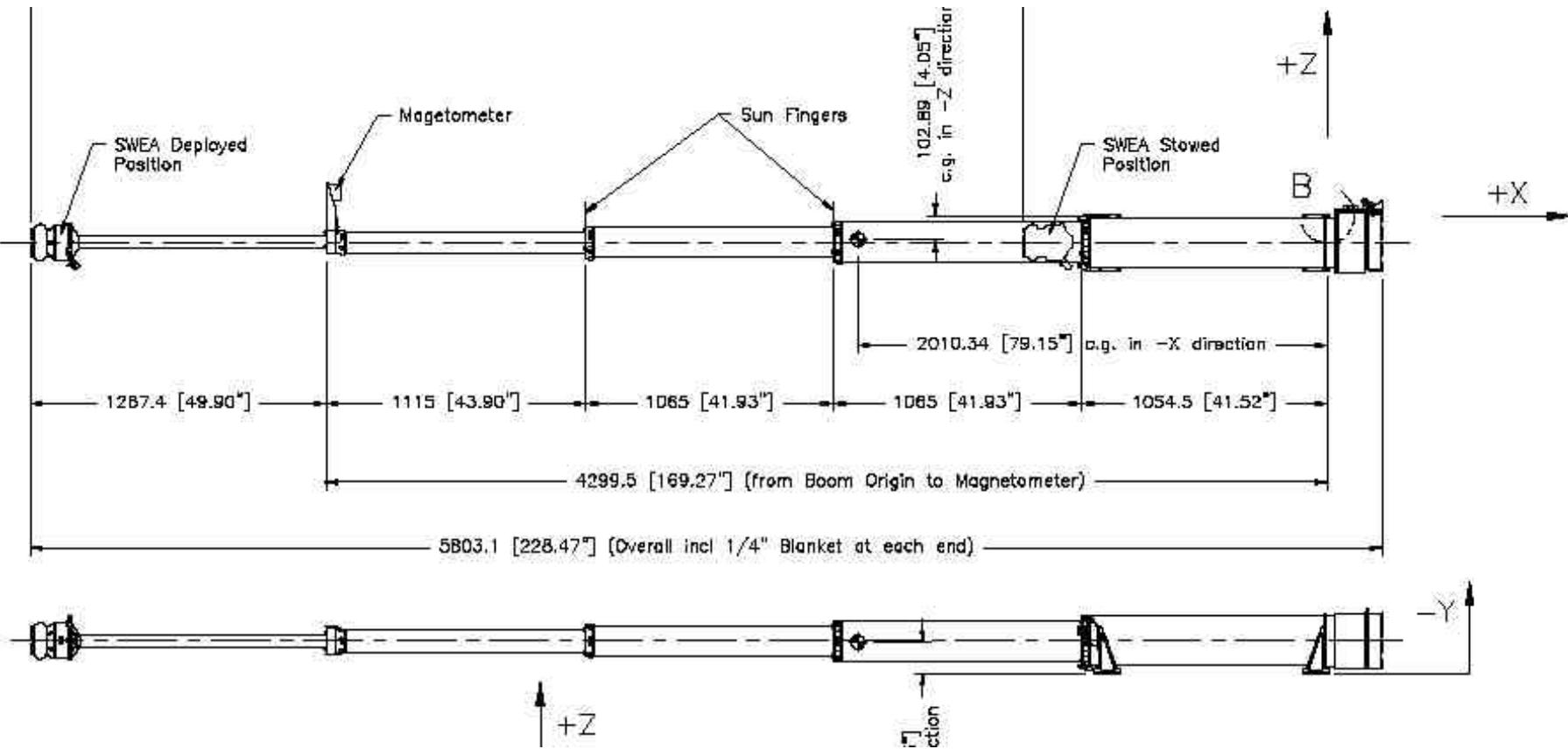
IMPACT Block Diagram





MAG Resources

- **MAG Sensor**
 - 0.25Kg
 - 0.5W Operational/Survival heater
- **MAG Front End (in IDPU)**
 - 0.30kg (excluding tray)
 - 0.38W
- **MAG Heater Control (in IDPU)**
 - 0.07kg
- **Telemetry:**
 - 398bps
 - 8Hz 16-bit 3-axis vectors plus overhead


STEREO IMPACT

Critical Design Review 2002 November 20,21,22


MAG ICD

Boom Suite (Stowed)

Boom Suite (Deployed)

MAG Sensor Alignment

IMPACT/MAG has a modest alignment requirement:

- $\pm 1^\circ$ alignment
- $\pm 0.5^\circ$ knowledge
- Should be obtainable by mounting tolerances
- MAG sensor axes should be aligned parallel to the S/C maneuver (principal) axes.
- In-flight roll calibrations will be used to determine final alignment

On-Orbit MAG Commissioning Phase

- Would like IMPACT/MAG powered on and the IMPACT boom deployed as soon as possible after launch. This will provide valuable data for modeling of the spacecraft field, and can also provide deployment engineering confirmation/diagnostics
- Perform calibration roll maneuvers 30+ days after launch

Rolls

- **Slow spacecraft rolls about the sun-line are required to calibrate the MAG DC offsets during the commissioning phase**
- **Rolls are also desirable for the other IMPACT instruments, to separate spatial effects from spacecraft effects in the measured particle distributions**
- **Rolls should occur in a low field region such as the solar wind**
- **Several rolls are desirable in case the ambient magnetic field is active during the measurement**
- **Rolls later in the mission, every six months, will measure the drift in the spacecraft DC fields and MAG sensor offsets**

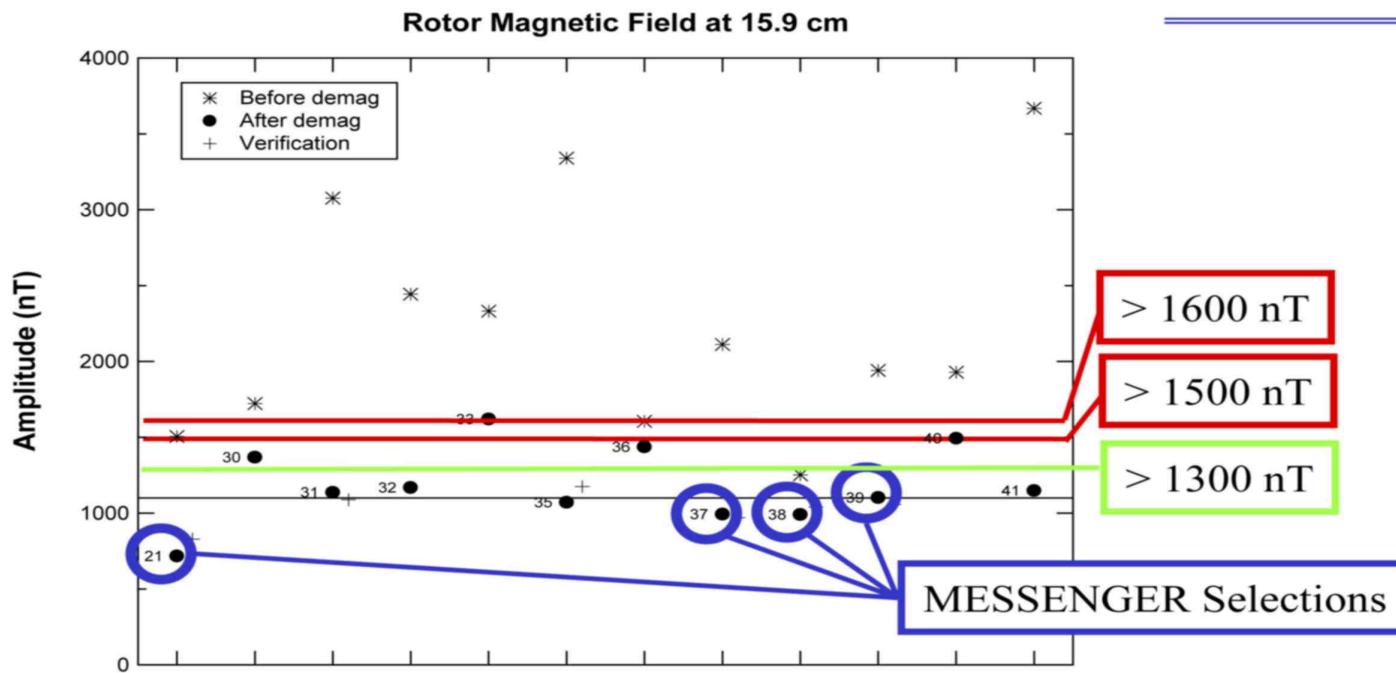
Magnetics

- **Magnetic Goals, as measured at the MAG sensor:**
 - $\pm 0.03\text{nT}$ Dynamic
 - $\pm 1\text{nT}$ Static
- **Magnetics Control Plan to be implemented using GSFC instrumentation and support. Objective: minimize dynamic fields from S/C and instruments**
- **Use of magnetic materials avoided/controlled**
- **Current loops need to be eliminated/compensated**
- **Items close to MAG sensor of particular concern (since field falls off at least as $1/R^3$)**
- **MAG team working closely with APL to help meet these requirements at minimum cost**
 - Magnetics Control Seminars at APL
 - Screening of spacecraft components
 - System level magnetic tests during I&T to verify performance
- **Mission Requirements: (a) Periodic (monthly) Spacecraft rolls, (b) MAG ON during boom deployment to calibrate spacecraft generated DC magnetic fields**

Magnetics Hot List

Magnetics Hot List					
SubSys	Item	Mag Problem	Actions	Status	Notes / Possible Plans of Attack
COMM	TWTA	Hot	Judi - find out maximum external field that would not effect TWTA Performance	Complete	TWTA can withstand 182dB pT at the tube (12.6 Gauss). Mario has data on tube and model of field from Vendor PLAN: Compensate with External Magnet Drawings to Mario on 7/9/02
			Mario - model TWTA in simple spacecraft model	Complete	
			Ken - Provide Mario with S/C configuration drawings to view TWTA mounting and also view potential locations for compensating magnet	Complete	
	Isolator	No (from Hot)	APL - contact vendor to see if would allow APL to borrow a unit to "sniff"	Complete	Magnetically-representative isolator tested at 200nT at 1 m. Isolator becomes mag problem. PLAN: Talk to Vendor about changing design Vendor improved design tests at 0.05 A-m ² . < 0.32nT at mag sensor...acceptable
			Mario - Test Unit	Complete	
			APL - get vendor improved design to GSFC for Test	Complete	
			Mario - Test Improved Unit	Complete	
	RF Switches	Possible	APL - order sample part to test	Complete	RF Switch sent to GSFC for testing on 6/6/2002. Tested at 100nT at 1 m. PLAN1: Compensate PLAN2: Try to Cancel with other switch when in HGA position (TBR) PLAN3: Shield
			Mario - perform test of switch	Complete	
PWR	Coax	No			coax runs from diplexer to transponder and from transponder to TWTA. Not an issue as long as copper-weld center conductors are not used.
	Waveguide	No			Not an issue as long as nickel-plating is not used.
	Battery	No?			Wire battery similar to MESSENGER; latching relay selection and location being monitored by Brian Anderson
	Solar Arrays	Possible			Array can be forward biased
			Mike - Provide Mario with Solar Array layout drawings	by CDR	
			Mike - Check with vendor if array diodes can be forward biased	Complete	
	Solar Array Junction Box	No?			Design similar to MESSENGER; Brian Anderson to monitor design
	PDU	No?			Design similar to MESSENGER; Brian Anderson to monitor design

Magnetics Hot List (continued)


GNC	Reaction Wheels	Possible			Reaction Wheel RFP out— Teldix Selected PLAN1: Wait for Wheel Selection and attempt to work with Vendor to reduce mag by degaussing components PLAN2: Met-Glass Shielding (2kg allocated) MESSENGER Data shows plan and allocation of MET glass is sufficient.
	IMU	No			Use MESSENGER Measurements—Same IMU as CONTOUR, waiting on Mag measurements
MECH	Clamp Band	No			SAAB-Ericsson Selected. Data received from vendor on previous band (1194 vs 937 diam). Springs located on S/C A and band on S/C B. S/C B field at sensor < 0.1nT. S/C A field (worst case) at >0.5 nT at sensor. PLAN: Request changing of spring assembly to A286
	HGA Actuator	No?			Estimated at 20nT @ 1 m, using worst case test data of larger actuator from Moog (Type 5 vs. Type 3)
	Fasteners	No			Magnetic stainless fasteners should be avoided, but their use is not prohibited due to their small size.
PROP	Latch Valves	Possible			Messenger data shows Mag moments of 19.7 nT m ³ along tubing and 81.2 nT m ³ perpendicular to mount, both in open configuration.
			Carl- Get Valve Mag data from MESSENGER	Complete	PLAN1: Try to Cancel Out 1 LV w/ another and mount 3rd to reduce field at Mag sensor
			Carl/Ken - Provide Mario with S/C configuration drawings to view latch valve mounting	Complete	PLAN2: Shield
			Carl - Order Latch valve for Testing	Complete	Drawings to Mario on 7/9/02; No Difference in open and closed position
			Mario - Test Unit in open and closed configurations	Complete	PLAN: Compensate with Mag on s/c structure
THERM	Thruster	No			PLAN: Degauss nozzles prior to s/c integration PLAN: Compensate with Mag on s/c structure
	Heaters	No			Project to not use Nichrome heaters
	Thermostats	No			No Change

Magnetics Hot List (continued)

I&T	Tools	No		Project to not use Magnetically attached tools; All tools degaussed on a regular schedule
	Load Cells	Possible		Keep load cells away from spacecraft.
	Vibe Table	No		Vibe Table to be compensated
	Lifting Eyes, Shackles	No		
SCI	PLASTIC	No		
	IMPACT	No?	SWEA heaters to be examined - Mario to work with Dave Curtis. Mag field simulated - get data to Mario	Complete the heater field meets the 0.05nT requirement. The heater is run by a PWM running at 100kHz with duty cycle programmable by the processor in a closed loop by the processor in 10% increments.
	SECCHI	Possible	SCIP telescopes - coating of instrument tubes needs to be non-magnetic	Complete - No Issue SCIP telescope tubes are coated with Aluminum.
			L. Springer - get Mario data on hollow core motors and motors in door mechanisms. RESEND DATA	SECCHI to order non-inductive heaters ?
	SECCHI - PWM Heaters	No	PWM heaters - SECCHI to provide details of design	Complete PLAN: Order all heaters "non-inductive"
	SECCHI - SCIP CCD/Mirror	No		PLAN: Degauss Invar Parts prior to instrument assembly
	SECCHI - Cover Motor	No?	Provide Mario with sample unit for Test	
	SWAVES	No		

Wheels (Analysis of Teldix Data)

Reaction Wheels	Reaction Wheel # From Sensor	Messenger Buy	Distance	Mag Field Measured at TELDIX (nT @ Xm)	Estimated Mag Field at Sensor (nT)	Dynamic Amplitude Goal (nT)	Shielding attenuation Required to Reach Goal	Field at sensor with one layer of Met Glass (nT)
			From Rotor (m)					
	#33, 40		3.429	1600	0.159	0.099	0.050	0.50
	#30, 36		3.429	1500	0.159	0.093	0.050	0.54
	#31, 32, 35, 41		3.429	1300	0.159	0.081	0.050	0.62

STEREO

Telecom -TWTA

- Plan:
 - Compensate with external magnets
- Work Done:
 - Initial analysis of TWTA magnetic field resulted in $> 2.5\text{nT}$ at sensor
 - Examined effect of compensation magnet near TWTA. Vendor can withstand max field of 182dBpT (12.6 Gauss) or a 100nT-m³ magnet 10 cm away.
- Analysis:
 - Mag PI to model TWTA and compensation magnets in simple spacecraft model to determine field and compatibility.
- Additional Point:
 - Data presented at KO meeting shows a AC Magnetic field generated by EPC of 0.3 nT at sensor. Frequency has been pushed up to 50 KHz.

Magnetometer Parts Engineering and QA

The overall applicable document is the IMPACT/PAIP

- **Code 695 Parts Engineer to Verify Quality Level, Radiation Tolerance, Operating Temperature, and GIDEP Alerts Before use or Procurement for Flight**
- **EEE Parts Selected and Tested per 311-INST-001, Quality Level 2 (or PPL21)**
- **Plastic Encapsulated Microcircuits (Not Listed in 311-INST-001) are Allowed if Equivalent Hermetic Parts are not Available. Plastic Parts to be Tested per IMPACT PAIP, which Includes DPA, Temperature Cycling, Burn-In, and Highly Accelerated Stress Testing (HAST)**
- **Radiation Effects: All MAG parts have been characterized to a total dose >10Krad without shielding. Shielding does not make much sense for STEREO.**
- **SEU's – MAG is not sensitive to SEUs and uses latch-up proof CMOS ICs.**

QA:

- **Manufacture, assembly and inspections by pre-qualified GSFC support contractors compliant with S311 requirements and/or ISO9001**
- **Electrical adjustment and testing, qualification, environmental testing performed in house at GSFC – Only manufacturing and assembly services provided by support contractors**
- **Identical materials, processes and parts used in >30 flight projects**

Magnetometer Calibration, Integration and MO&DA

- MAG calibration will take place in house at GSFC if the MAG Test Facility becomes available in the near future. Currently non-operational
- Backup plan is to use the Wallops Island Magnetic Test Facility which is fully operational and has adequate performance to fully verify IMPACT/MAG performance
- Other calibrations/characterizations performed within Code 695
- MAG will be integrated with the IMPACT IDPU and boom at UCB/SSL
- Initial checkout performed using IDPU simulator and boom test cables
- Procedures similar to those used for the MGS/MAGER and Lunar Prospector MAG/ER are being updated

MO&DA: Other than discussed previously (rolls) the MAG is a fully automatic instrument that requires little commanding and MO planning during routine operations. At most a few commands per week which will be integrated with other IMPACT activities

Magnetometer Verification Matrix

		Verification Matrix for STEREO/IMPACT/MAG												Revision Date: 9/7/01		
		Test												Revision Number: 1		
Hardware Description		Test												Comments		
Item	Level of Assembly	Test												Comments		
		Contamination														
		Bakeout														
		Magnetics														
		EMC/EMI														
		>100 hours Operation														
		Thermal balance														
		Thermal cycle														
		Voltage margins														
		Thermal Vacuum														
Electronics, EM		Acoustics														
Elect. test, rm. Temp		Shock														
Vibration, Random		Vibration, Sinusoidal														
Elect. Test, cold		Elect. Test, hot														
Bench Calibration		BB Breadboard														
Elect. test, rm. Temp		EM Engineering Model														
F = Flight		PT Prototype														
PF Protoflight		H = Test at higher level of assembly (Boom for sensor, IDPU for electronics)														

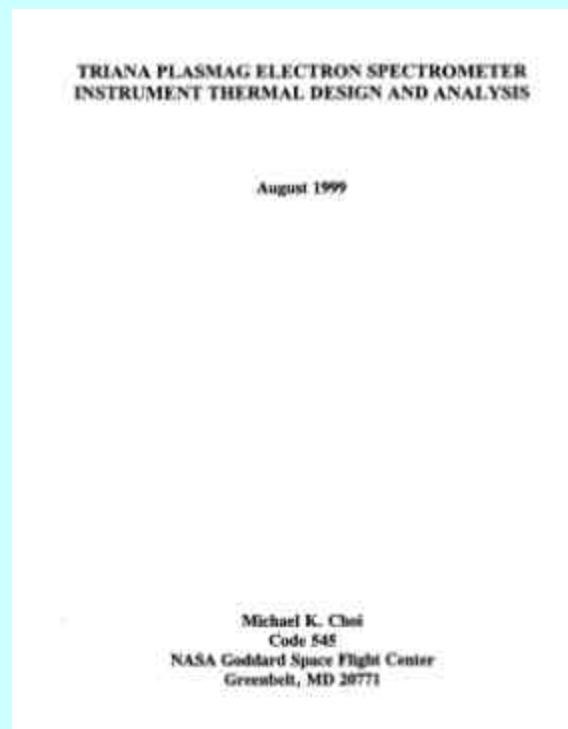
Legend:

Level of Assembly	Unit Type	X = Test required
		A = Analysis
C = Component	BB Breadboard	H = Test at higher level of assembly
I = Instrument	EM Engineering Model	(Boom for sensor, IDPU for electronics)
	PT Prototype	
	PF Protoflight	
	F = Flight	

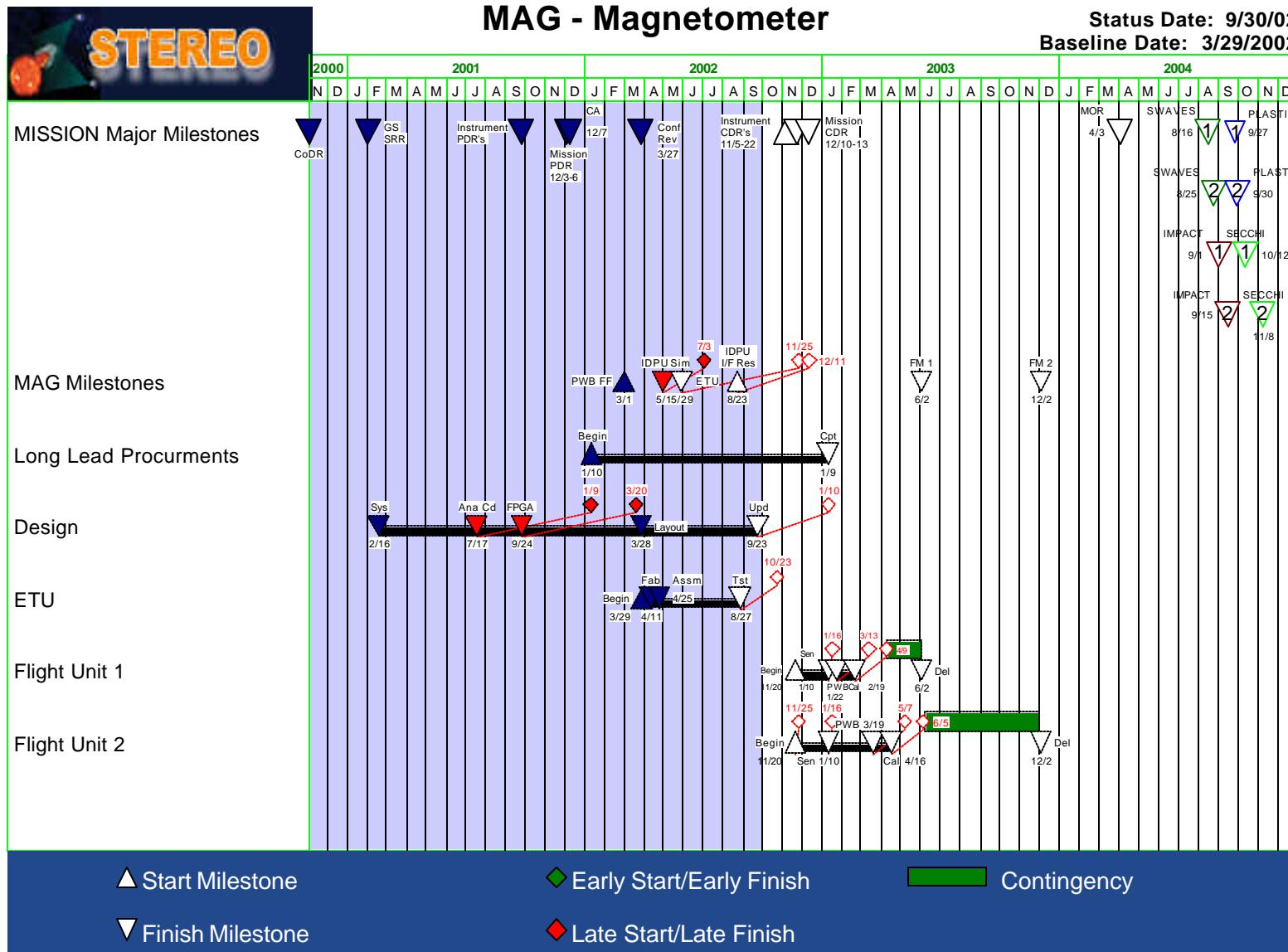
Magnetometer System Level Tests

Spacecraft system level magnetic testing is a **MUST** and will involve two main tests:

1. **Static test to determine the residual magnetic field of the spacecraft.** This will require that the spacecraft be suspended from an overhead crane or mounted on a non-magnetic handling fixture. Special ground based magnetometers will be used to measure the field
2. **Dynamic test to determine the magnetic fields generated by currents circulating in the spacecraft and the actuation of motors and relays.** Field is measured with MAG and ground based magnetometers



These tests are *verification test* and not “discovery” tests of the magnetic performance of the spacecraft


IMPACT/MAG Current Status

- Baseline design was optimized for surface mount components to miniaturize instrument electronics. Surface mount inductors successfully built and tested for MESSENGER ETU
- 90% of engineering schematics and drawings completed
- Miniature coaxial cables provided by UCB were tested successfully on fully functional MAG breadboard
- Flight fluxgate sensors have been fabricated and assembled. Ready for integration with MAG electronics
- 16-20 bit sigma-delta low power A/D converter(s) selected for implementation. Identical to NEAR, MESSENGER
- Interfaces to IDPU and Boom defined. IDPU MAG simulator is being tested
- Magnetics Workshops and characterization efforts for spacecraft and instrument components conducted on a regular basis
- Manufacturing contracts in place for flight electronics

IMPACT/MAG Current Status

- Procurement of surface mount components ~75% complete
- Heater board layout is complete and board is being manufactured
- Thermal design update conducted by UCB – consistent with previous results on similar missions. Heater board sized to deliver 1W max but expected level is within allocation (0.2W)

