Multi-Spacecraft Observations of SEPs: Applications for 3D Propagation Modelling

B. Klecker

Max-Planck-Institut für extraterrestrische Physik, 85740 Garching, Germany

W. Dröge

University of Würzburg, Würzburg, Germany

Y.Y. Kartavykh, A. Kovaltsov

loffe Physical-Technical Institute, St. Petersburg, Russia

STEREO SWG #20

Meredith, NH

October 27 - 29, 2009

• Part 1

3D Propagation Model and First Results

• Part 2

Future Applications to Observations with STEREO-A/B, SOHO, ACE, WIND

Activity started as part of the ISSI Team # 118 on

Transport of Energetic Particles in the Inner Heliosphere

Team Members: M. Desai, **W. Dröge** (Lead), P. Evenson, B. Heber, T. Horbury, Y.Y. Kartavykh, B. Klecker, K.-L. Klein, S. Krucker, R. Schlickeiser, C. Smith

THE 3D PROPAGATION MODEL

Particle propagation in a 3D archimedian spiral magnetic field, Including the effects of

- pitch angle scattering,
- focusing,
- diffusion perpendicular to B
- convection and adiabatic deceleration

Presently: model assumes impulsive injection at a localized source at the Sun

Numerical Method, solving stochastic differential equations

(Paper "Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere" by Dröge et al., ApJ, in refereeing process)

THE 3D PROPAGATION MODEL Simulation for 4 MeV Protons

-2

-1

HEEQ X - direction (AU)

2

Dröge et al., 2009

THE 3D PROPAGATION MODEL

More realistic:

 λ_{perp} scales with gyroradius:

$$\lambda_{\perp} = \alpha \cdot \lambda_{\parallel} \cdot \left(\frac{r}{1 \mathrm{AU}}\right)^2 \cdot \cos \psi \cdot \sqrt{1 - \mu^2} \ \mathrm{AU}$$

THE 3D PROPAGATION MODEL Single Spacecraft Applications

DROPOUTS

CUTOFFS

Mazur et al. (2000)

ACE ULEIS 1 May 2000

- no velocity dispersion
- time variations correspond to large spatial gradients perpendicular to B, convected past the spacecraft

APPLICATION OF 3D PROPAGATION MODEL

Single Spacecraft Observations

I. Intensity-Time Profiles

╢

7

APPLICATION OF 3D PROPAGATION MODEL Single Spacecraft Observations

II. Anisotropies

 Π

Case 2: Small anisotropy S/C entering flux tube filled with particles later

APPLICATION OF 3D-PROPAGATION CODE TO OBSERVATIONS BY STEREO-A/B, ACE, WIND, SOHO

II. Multi Spacecraft Observations

(1) Use remote observations to obtain injection parameters at the Sun

Type II, III bursts, X-rays, CME- Radio - observations, ...

(2) In-situ Observations

Use Intensity-Time Profiles, Anisotropy-Time Profiles as measured on several spacecraft separated in longitude, latitude, radial distance to infer

- Injection characteristics at the Sun
- Propagation parameters in Interplanetary Space

APPLICATION OF 3D-PROPAGATION CODE TO OBSERVATIONS BY STEREO-A/B, ACE, WIND, SOHO

Candidate Time Periods

Parker spiral plotted using Vsw [A,ACE,B] = 489(R), 487(R), 445(R) km/s (N=nominal, R=avg from data)

(http://www2.physik.uni-kiel.de/stereo/browseplots/index.php)

2008 - Nov 3/4 Events In-Situ Observation with ACE and STEREO

Candidate Time Periods

I. May 2007

{Ⅲ

- II. Nov 2008
- III. May 2009
- (II) Nov 3/4 2008 Event
- N35W38
- C1 X-ray event
- **Type III burst**
- **Small CME**
- (Wiedenbeck et al., ICRC 2009;
- Mason, et al., ApJ 2009)

Wiedenbeck et al., 2009

ORBIT CONFIGURATION OF STEREO-A/B and ACE for Day 309 (Nov 4) 2008

Parker spiral plotted using Vsw [A,ACE,B] = 450(N), 361(R), 450(N) km/s (N=nominal, R=avg from data)

A - B Separation: 82°

Configuration of STEREO / ACE for Day 309 (Nov 4), 2008

(http://www2.physik.uni-kiel.de/stereo/browseplots/index.php)

2008 - Nov 3/4 Events Remote Observation with SOHO and STEREO

Nov 4, 2008 Event Active Region 11007

2008 - Nov 3/4 Events Remote Observation with STEREO and WIND

Nov 3

Nov 4

WIND / WAVES

STEREO / WAVES

14

2008 - Nov 3/4 Events Remote Observation with SOHO

Nov 3 23:30	Nov 4 03:54
Speed: ~ 370 km/s	~ 732 km/s
Width: $\sim 46^{\circ}$	~ 66°

2008 - Nov 3/4 Events In-Situ Observation with ACE and STEREO

2008 - Nov 3/4 Events In-Situ Observation with ACE, WIND and STEREO

ACE / EPAM

WIND / 3DP

2008 - Nov 3/4 Events In-Situ Observation with ACE, WIND and STEREO

STEREO / SEPT

STEREO / SEPT

POSSIBLE COMPLICATIONS

Flare Longitude is not Necessarily Injection Longitude

Klein, et al., 2008

Fast access to open field lines at large $\Delta \Phi$ due to non-radial flux tubes

2008 - Nov 3/4 Events Event Summary

- ~40 300 keV electrons observed over large range of solar longitudes
- intensity (two injections)- and anisotropy-time profiles are providing constraints on pitch angle scattering, perpendicular diffusion, and location of injection

- PFSS model does not show open field lines that connect to near-equator region
- Possible resolution of this puzzle: dynamical changes in magnetic field configuration by CME

Mason, et al., 2009

Open field line maps from photosphere to $2.5 R_S$ surface from PFSS model .

Yellow: open field lines that connect to the ecliptic

SUMMARY

May 2007 Events

Good candidates for single spacecraft analysis of intensity and anisotropy

Nov 2008 Events

Multispacecraft analysis could be promising, Ion intensity too small

May 2009 Events

Good statistics for ions and electrons, intensity and anisotropy measurements are available

Events observed at large longitudinal separation: non-radial flux tubes close to the Sun may be important