

2004 SWG Boulde 22 March, 200

IMPACT (In-situ Measurements of Particles and CME Transients) Instrument Overview

- Boom Suite:
 - Solar Wind Electron Analyzer (SWEA)
 - Suprathermal Electron Telescope (STE)
 - Magnetometer (MAG)
- Solar Energetic Particles Package (SEP)
 - Suprathermal Ion Telescope (SIT)
 - Solar Electron and Proton Telescope (SEPT)
 - Low Energy Telescope (LET)
 - High Energy Telescope (HET)
- Support:
 - IMPACT Boom
 - SEP Central
 - Instrument Data Processing Unit (IDPU)

IMPACT Team Member Institutions and Primary Roles

- University of California, Berkeley-Space Sciences Laboratory (IMPACT Management, SWEA, STE, IDPU)
- NASA Goddard Space Flight Center (MAG, SEP-LET, HET)
- California Institute of Technology (SEP-LET, HET)
- University of Maryland (SEP-SIT)
- University of Kiel (SEP-SEPT)
- Centre d'Etude Spatiale des Rayonnements CESR (SWEA)
- Los Alamos National Laboratory (Science Integration, SEP-SIT)
- Max Planck Institut fur Aeronomie (SEP-SIT)
- Jet Propulsion Laboratory (SEP-LET, HET)
- ESTEC-European Space Agency (SEP-SEPT)
- DESPA Observatoire de Paris-Meudon (SWAVES/IMPACT coordination)
- University of California, Los Angeles (MAG, IMPACT Data Web)
- SAIC-Science Applications International Corporation (IMPACT Modeling)
- NOAA Space Environment Center (IMPACT Modeling, Space Weather Applications)
- University of Michigan (IMPACT Modeling)
- KFKI-Hungarian Research Institute for Particle and Nuclear Physics (SEP Modeling)

2004 SWG Boulde 22 March, 200

Overall IMPACT Investigation Rationale

IMPACT Directional Coverage

Parker Spiral

Mercator projection of 4 π angular coverage sphere. Sun in center. Contours show statistics of interplanetary field direction. Dark lines show IMPACT particle instrument fields of view.

IMPACT Energy & Flux Coverage: Solar Wind, Suprathermal and SEP electrons, SEP ions

SEP Ions Composition Coverage

Experiment	Instrument	Measurement	Energy or Mag. field range	Time Res.	Beacon Time Res. (*)	Instrument provider
SW	STE	Electron flux and anistropy	2-100 keV	16 s	2D x 3E, 60s	UCB (Lin)
	SWEA	3D electron distrib., core & halo density, temp. & anisotropy	~0-3 keV	3D=1 min 2D=8s Mom.=2s	Moments, 60s	CESR (Sauvaud) + UCB (Lin)
MAG	MAG	Vector field	±500nT, ±65536 nT	1/4 s	60s	GSFC (Acuna)
SEP	SIT	He to Fe ions	0.03-2 MeV/nuc	1 min	3S x 2E, 60s	U. of Md. (Mason)
		³ He	0.15-0.25 MeV/nuc	1 min		+ MPAE (Korth) + GSFC (von Rosenvinge)
	SEPT	Diff. electron flux	20-400 keV	1 min	3E, 60s	U. of Kiel (Mueller-
		Diff. proton flux	60-7000 keV	1 min	3E, 60s	Mellin)
		Anistropies of e,p	As above	15 min		+ ESTEC (Sanderson)
	LET	Ion mass numbers 2-28 & anisotropy	3-30 MeV/nuc	1-15 min.	2S x 2E, 60s	Caltech (Mewaldt) + GSFC (von Rosenvinge)
		³ He ions flux & anistropy	2-15 MeV/nuc	15 min.	1E, 60s	+ JPL (Wiedenbeck)
		H ions flux & anistropy	1.5-6 MeV	1-15 min.	1E, 60s	
	HET	Electrons flux	1-6 MeV	1-15 min.	1E, 60s	GSFC (von Rosenvinge)
		Н	13-100 MeV	1-15 min.	1E, 60s	+ Caltech (Mewaldt)
		He	13-100 MeV	1-15 min.	1E, 60s	+ JPL (Wiedenbeck)
		³ He	15-60 MeV/nuc	15 min		
	SEP Common					Caltech (Mewaldt) + GSFC (von Rosenvinge)
IMPACT Common	IDPU (+Mag Analog)					UCB (Curtis)

Basic IMPACT Measurements

Overall IMPACT Status, Test Readiness

- Instruments are in various states of readiness for test, as described below
 - SEPT instrument now in environmental testing; PER review held in January 2004
- Working towards a suite delivery to APL in October 2004
 - Boom and SEP suites deliver separately to APL
 - FM2 delivered ~2 weeks after FM1

2004 SWG Boulde 22 March, 200

STE-U Status

- STE-U currently in fabrication
 - Detector boards built, detectors installed, in test
 - First preamp board complete and tested, remaining 3 in fabrication
 - Housing fabricated
 - STE door life test complete, >10x expected life, 5 year mission

Flight STE-U Preamp

ETU STE Housing with Door

2004 SWG Boulde 22 March, 200

SWEA/STE-D Status

- FM1 SWEA calibrated and delivered to UCB
 - One open issue with a part failure
- FM2 SWEA in calibration at CESR
- FM1 STE-D and pedestal electronics in fabrication

ETU SWEA/Pedestal/STE-D assembly on manipulator at UCB

MAG Status

- MAG FM1 complete, conformal coated, and in final tests
 - Some issues with conformal coat of heater boards
- MAG FM2 ready for conformal coat

FM1 MAG Electronics and FM2 MAG Sensor

2004 SWG Boulde 22 March, 200

Boom Status

- Qual boom through qualification program
- FM1 and FM2 booms fabricated, in assembly

Qual boom ready for thermal balance test

SEP Sensors on the Spacecraft

Low Energy Telescope (LET) Schematic

2004 SWG Boulde 22 March, 200

Low Energy Telescope (LET) EM Unit

HET Telescope Schematic

LET/HET/SEP Central Status

- SEP Central
 - Flight PCBs mostly assembled and in test
 - Housings are in final design stages expect flight parts in March/April
 - Software ~80% complete

• LET

- Detector testing mostly complete will get a few replacements for failed devices
- Hybrids complete except for quality testing
- LET PCBs about 80% assembled
- Housings are in final design stages expect flight parts in March/April
- Software ~90% complete

LET/HET/SEP Central Status (continued)

• HET

- Final ETU get-together in January at Caltech to exercise commands, uploads to E2PROM, and uploads to RAM
- HET detectors: 9 H1 detectors (will fly 4) and 10 H3 detectors (will fly 14) are in house; testing is underway
 - Leakage current growth problem with most of these detectors
 - A second batch has been received, will go to test soon
 - More detectors have been ordered
- Hybrids: flight PHASICs have all been received
- Actels: Design and test complete, flight Actels programmed
- FM1 and FM2 boards loaded, FM1 board passed final tests
- Housings are in final design stage expect flight parts by mid March
- Software ~80% complete
- Comprehensive Performance Test not yet defined

2004 SWG Boulde 22 March, 200

SIT Instrument Assembly

SIT STATUS

- SIT Telescope
 - ETU Telescope at UMd participating in SIT testing
 - Flight Foils at GSFC, MCPs tested at UMd and stored at GSFC
 - Flight SSDs under test at GSFC
- TOF System
 - New FM1 delivered to UMd, in test. FM2 in fab at MPAe.
- Energy Board
 - ETU is integrated in the ETU electronics at UMd. Flight units are under construction at GSFC.
- Logic Board/MISC
 - The updated ETU logic board and updated motherboard have been integrated with the remaining electronics. Testing is underway at UMd.
- HVPS
 - FM1 passed tests at UMd with ETU instrument. FM2 in assembly at UCB.
- Flight Software
 - Version 11/20/03 is installed in the ETU under test at UMd.

2004 SWG Boulde 22 March, 200

SEPT

Front View

Side View

SEPT Status

- Four SEPT flight units and two brackets fully assembled, bench tested, and ready for environmental tests.
- Test Readiness Review for SEPT held on FEB 13, 2004.
- Vibration
 - Vibration test for SEPT-NS (FM1 and FM2) performed Feb 16 20, 2004.
 - Vibration test for SEPT-E (FM1 and FM2) performed Feb 20 24, 2004.
 - SEPT-NS FM2 failure during door opening test after vibration, Problem Report IMPACT PFR 7001 submitted on Mar 01, 2004.
 - Need for re-vibration of TBD axes to TBD levels.
- TV
 - Thermal vacuum test for SEPT-E and SEPT-NS (FM1) performed Mar 4 11, 2004.
 - Thermal vacuum test for SEPT-E and SEPT-NS (FM2) in progress.
 - Indications of possible detector problems (increased leakage current) detected during TV.
 Indications of possible door opening problems detected during TV. Analysis in progress.
 - Possible need for (partial) repetition of TV pending outcome of analysis.
- Thermal balance test scheduled for July 2004 at GSFC.

2004 SWG Boulde 22 March, 200

IDPU Status IDPU Flight Data Controller Boards

- Data control board flight units done
- Comprehensive performance test run on ETU
- PLASTIC software progressing

Science Data

• Semantics

- Level 1 Data Highest Time Resolution Data in Physical Units (available in CDF, ASCII, FITS, etc.) accessed from UCB
- Level 2 Data "Key Parameter" Data with 1 Minute Resolution accessed from UCLA (interactive plotting and ASCII files available)
- Level 3 Data "Value Added" Data (event lists...) accessed from UCLA
- Beacon/Space Weather Data Data containing NRT data products accessed from SSC
- UCB will host a web page with links to all the above data sets

Level Two Browser

- UCLA will provide online browsing capability of Level 2 (Key-Parameter) Data from IMPACT, PLASTIC, and SWAVES (SECCHI?)
- User able to select particular data sets across these instruments and instruments from other spacecraft for plotting
- UCLA browser will support downloading of Level 2 Data in ASCII format

Level One Data in CDF

- List of Useful CDF Tools at: <u>http://sprg.ssl.berkeley.edu/impact/peters/cdflinks.htm</u>
- Extremely Useful CDF Conversion Tool at: <u>http://translators.gsfc.nasa.gov/home.jsp</u>

Level One Summary Plots

- UCB will create a set of standardized summary plots using Level 1 (high time resolution) Data and including PLASTIC, SWAVES, and other data sets (ie. L1 spacecraft, GOES data, ...) (SECCHI?)
- UCB is investigating interactive plotting of Level One Data using ION (IDL Over the Net)
- Allows access to UCB internal IDL libraries without the user needing to fuss with IDL or our software
- Haven't done it before at UCB so will take time and resources
- Like any widget, it would only be as smart and as flexible as we can dream up

Peter Schroeder

peters@ssl.berkeley.edu http://sprg.ssl.berkeley.edu/impact/peters

2004 SWG Boulde 22 March, 200

Summary Plots and Browser Developments

Example from Helios 1/2 data for Carrington Rotation 1663 (left), Spacecraft locations (bottom), and SECCHI image placeholder from SOHO (S. Yashiro CDAW website images)

•Helios prototype under development

•Plan to integrate SWAVES data

- •Need plan for plastic
- •Plan for L1 data integration (ACE, WIND)
- •Integrate imaging somehow

2004 SWG Boulde 22 March, 200

Modeling is needed to connect IMPACT observations to SECCHI images

2004 SWG Boulde 22 March, 200

spare

Acceleration Sites can be Inferred from SEP Timing

2004 SWG Boulde 22 March, 200

Luhmann

Image of Possible Flare Source of Electrons (from Yohkoh SXT)

33

2004 SWG Boulde 22 March, 200

Magnetic Topology Measurements Using Magnetic Fields

Spacecraft sampling

"Fly Through" Model ICME Flux Rope (or other models) to reproduce Vector Field observations.

