State of NOAA-SEC/CIRES STEREO Heliospheric Models

Dusan Odstrcil

University of Colorado/CIRES \& NOAA/Space Environment Center

STEREO SWG Meeting, NOAA/SEC, Boulder, CO, March 22, 2004

Collaborators

§ Nick Arge - AFRL, Hanscom, MA
§ Chris Hood - University of Colorado, Boulder, CO
§ Jon Linker - SAIC, San Diego, CA
§ Rob Markel - University of Colorado, Boulder, CO
§ Leslie Mayer - University of Colorado, Boulder, CO
§ Vic Pizzo - NOAA/SEC, Boulder, CO
§ Pete Riley - SAIC, San Diego, CA
§ Marek Vandas - Astronomical Institute, Prague, Czech Republic
§ Xuepu Zhao - Stanford University, Standford, CA

Input Data

- Analytic Models:
- structured solar wind (bi-modal, tilted)
- over-pressured plasma cloud (3-D)
- magnetic flux-rope (3-D in progress)
- Empirical Models:
- WSA source surface
- SAIC source surface
- CME cone model (location, diameter, and speed)
- Numerical Models:
- SAIC coronal model (ambient + transient outflow)

Analytic Model - Distortion of ICME Study

Empirical model - Ambient Solar Wind

Derived Velocity at Source Surface

Observed and Predicted Velocity at Earth

Numerical Model -- Magnetic Flux Rope

Ambient Solar Wind Models

SAIC 3-D MHD steady state coronal model based on photospheric field maps

CU/CIRES-NOAA/SEC 3-D solar wind model based on potential and current-sheet source surface empirical models

CME Cone Model

Best fitting for May 12, 1997 halo CME

- latitude: N3.0
- longitude: W1.0
- angular width: 50 deg
- velocity:650 km/s at $24 \mathrm{R}_{\mathrm{S}}$ (14:15 UT)
- acceleration: $18.5 \mathrm{~m} / \mathrm{s}^{2}$
[Zhao et al., 2001]

Boundary Conditions

Ambient Solar Wind

Ambient Solar Wind $+$
Plasma Cloud

Latitudinal Distortion of ICME Shape

ICME propagates into bi-modal solar wind

Evolution of Density Structure

ICME propagates into the enhanced density of a streamer belt flow

Synthetic White-Light Imaging

$$
97-05-12 \quad 06: 00
$$

Total Brightness

Running Difference

INTENSITY

Appearance of Transient Density Structure

IPS observations detect interplanetary transients that sometime show two enhanced spots instead of a halo ring [Tokumaru et al., 2003]

MHD simulation shows a dynamic interaction between the ICME and ambient solar wind that:
(1) forms an arc-like density structure; and (2) results in two brighter
 spots in synthetic images

Evolution of Parameters at Earth

May 12, 1997 - Interplanetary Shock

Distribution of parameters in equatorial plane

- Shock propagates in a fast stream and merges with its leading edge

Evolution of velocity on Sun-Earth line

Case A1 Case A3

Fast-Stream Position [SAIC maps -- Pete Riley]

Ambient state before the CME launch

Disturbed state during the CME launch

Ambient state after the CME launch

Effect of Fast-Stream Position [SAIC maps -- Pete Riley]

Case A1

Earth : Interaction region followed by shock and CME (not observed)

Case A3

Earth : Shock and CME (observed but 3-day shift is too large)

Fast-Stream Evolution

 [SAIC maps -- Pete Riley]Ambient state before the CME launch

Disturbed state during the CME launch

Ambient state after the CME launch

Effect of Fast-Stream Evolution [SAIC maps -- Pete Riley]

Case A2

Earth : Interaction region followed by shock and CME (not observed)

Case B2

Earth : Shock and CME (observed but shock front is radial)

Evolution of Parameters at Earth

Remote Access

ENKI - Interface to ENLIL

Project saic_cr on Blackforest - Input for ini-saic_cr.pro

Name 1922a2s

Computational Region

R_min (AU)	R_max (AU)	N_r 240	Guard Cells $\diamond_{1} \diamond_{2}$
10.14	I1.10		
$\begin{aligned} & \text { Theta_min (deg) } \\ & 130 \end{aligned}$	Theta_max (deg)	N_theta 160	Grid Spacing uniform \diamond sin $\sin ^{\wedge} 0.5$
	1150		
Phi_min (deg)	Phi_max (deg)	N_phi [180	Grid Spacing uniform $\diamond \sin \diamond$ $\sin ^{\wedge} 0.5$
10	1360		

Select CR Number
Directory saic \quad cr1922

Solar Wind Parameters

Density_slow (cm-3)	Temperature_slow (MK)	Flux $\diamond \mathrm{NV}^{\wedge} 1 \diamond \mathrm{NV}^{\wedge} 1.5$
I600do	10.1d0	$\bigcirc \mathrm{NV}^{\wedge} 2$

Parameters

WebMail $<$ Calendar $\&$ Radio $\&$ People $\&$ Yellow Pages \angle Download \leftrightarrows Channels
Project saic_cr on Blackforest - Source Surface Data for CR Number

Confirmation

You have specified case: 1922a2s. $240 \times 60 \times 180$

Return to Main Menu

ENKI - Interface to ENLIL

Project saic_cr on Blackforest - Numerical Code: Specification
Name and Grid Size

Name:	Grid size (N 1 xN 2 xN 3):		
m1m	x 240	x 160	180

Compilation and Diagnostics

Optimize: yes no	Check: \checkmark yes no	Diagnostics: yes no	Trace: \checkmark yes no	Vampir: ∇ yes no	HPM: \checkmark yes no	Paramesh: yes no	Max blocks: (Only for Paramesh) II

Mathematical Description

Physical model: \diamond con \checkmark hyd mhd	Volumetric heat: yes no	Electric resistivity: yes no	Energy equation: total thermal	Cloud tracing: yes no	Polarity tracing: yes no
Geometry: cartesian cylindrical spherical	Momentum source terms: grad div	Energy source terms: grad div	Magnetic field source terms: grad div	Gamma array: yes no	

Method of Solution

Spatial integration: splitted multidimensional	Differencing: upwind centered	Mode of non-planar limiter: primitive conservative	Slope limiter: \checkmark minmod roe woodward
Div(B) correction:	Field mesh:	CFL condition:	

```
File Edit view go Communicator
** Bookmarks Location: hhtp:///ocalhost/erki//rki. cgi \
```


Project saic_cr on Blackforest - Specify Run Parameters

Current Settings

Case: Code:
1922a2s. $240 \times 60 \times 18040-\mathrm{m} 1 \mathrm{~m} .240 \times 60 \times 180$

Specify New

Name:	Label:
Irun1	IAmbient Solar Wind - CR

Batch Job Parameters

Core file size limit:	Wall clock limit:
$\diamond 128 \mathrm{MB} \diamond 256 \mathrm{MB} \diamond 512 \mathrm{MB}$	$\diamond 10 \mathrm{~min} \diamond 30 \mathrm{~min} \diamond 1 \mathrm{~h} \diamond 3 \mathrm{~h} \diamond 6 \mathrm{~h}$

Units

Time: \diamond sec \diamond hour \diamond day Space: $\diamond \mathrm{m} \diamond$ Mm \diamond Re \diamond Rs \diamond AU

Time Interval

Start computations at or after this time: $1-144$ Stop computations at or after this time: 1672

Output of Values for (Eventual) Restart (*.res.nc)

Frequency: Io
Output of 3-D Arrays at Given Times (*.tim.nc)

Remote Visualization: ENKI--IDL

dave-blackforest integration

ARCS cluster: blackforest, dave, other systems

MSS
dataproc

Preview of data before downloading processing and visualization, archiving, etc.
Plot 1-D profiles and 2-D contours or surfaces of 1-D, 2-D, or 3-D data

\& Webmall $<$ Calendar $<$ Radio Peonte
Project saic_cr on Blackforest - Plot:
Visualize Data: 1922a2s.1x60x180.bnd.nc

Interplanetary Disturbances

